【題目】操作與探索

已知O為直線AB上一點,作射線OC,將直角三角板ODE放置在直線上方(如圖),使直角頂點與點O重合,一條直角邊OD重疊在射線OA上,將三角板繞點O旋轉

(1)當三角板旋轉到如圖的位置時,若OD平分AOC,試說明OE也平分BOC.

(2)若OCAB,垂足為點O(如圖),請直接寫出與DOB互補的角

(3)AOC=135°(如圖),三角板繞點O按順時針如圖的位置開始旋轉,到OE邊與射線OB重合結束. 請通過操作,探索:在旋轉過程中,DOBCOE的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請用含有n(n為三角板旋轉的度數(shù))的代數(shù)式表示這個差.

【答案】(1)OD平分AOC可得AOD=COD,由DOE=90°可得AOD+EOB=90°,COD+COE=90°,即可證得結論;(2)AOD、COE;

(3)n45°,DOBCOE=135°,n>45°,DOBCOE=225°2n

【解析】

試題分析:(1)OD平分AOC可得AOD=COD,由DOE=90°可得AOD+EOB=90°,COD+COE=90°,即可證得結論;

(2)由OCAB可得AOD+COD=90°,DOE=90°可得COD+COE=90°,即可得到AOD=COE,從而可以求得DOB互補的角;

(3)由于旋轉45°時,OE與OC重合,故要分n45°n>45°兩種情況分析.

(1)OD平分AOC

AOD=COD

DOE=90°

AOD+EOB=90°,COD+COE=90°

COE=EOB

OE也平分BOC;

(2)OCAB,DOE=90°

AOD+COD=90°,COD+COE=90°

∴∠AOD=COE

DOB互補的角為AOD、COE;

(3)n45°,DOBCOE=(180°-n)-(45°-n)=180°-n-45°+n=135°,

n>45°DOBCOE=(180°-n)-(n-45°)=180°-n-n+45°=225°2n.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一個七邊形棋盤如圖所示,7個頂點順序從06編號,稱為七個格子.一枚棋子放在0格,現(xiàn)在依逆時針移動這枚棋子,第一次移動1格,第二次移動2格,…,第n次移動n格.則不停留棋子的格子的編號有_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓心角∠AOB=120°,弦AB=2 cm.

(1)求⊙O的半徑r;
(2)求劣弧 的長(結果保留 ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的高BDCE相交于點O,OD=OEAO的延長線交BC于點M,請你從圖中找出幾對全等的直角三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, △ABC內(nèi)接于⊙O, AD⊥BC于D, AE是⊙O的直徑. 若AB=6, AC=8, AE=11, 求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中, AO∠BAC的角平分線, D AO上一點,以 CD為一邊且在 CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE.

(2)延長BEQ, PBQ上一點,連接 CP、CQ使 CP=CQ=5,若 BC=6,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】骰子是6個面上分別寫有數(shù)字1,2,34,5,6的小立方體,它任意兩對面上所寫的兩個數(shù)字之和為7.將這樣相同的幾個骰子按照相接觸的兩個面上的數(shù)字的積為6擺成一個幾何體,這個幾何體的三視圖如圖所示.已知圖中所標注的是部分面上的數(shù)字,則“*”所代表的數(shù)是( )

A. 2 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑是2,直線l與⊙O相交于A、B兩點,M、N是⊙O上的兩個動點,且在直線l的異側,若∠AMB=45°,則四邊形MANB面積的最大值是(
A.2
B.4
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一種包裝盒的表面展開圖,將它圍起來可得到一個幾何體的模型.

(1)這個幾何體模型的名稱是
(2)如圖2是根據(jù)a,b,h的取值畫出的幾何體的主視圖和俯視圖(圖中實線表示的長方形),請在網(wǎng)格中畫出該幾何體的左視圖.
(3)若h=a+b,且a,b滿足 a2+b2﹣a﹣6b+10=0,求該幾何體的表面積.

查看答案和解析>>

同步練習冊答案