【題目】操作與探索:
已知點O為直線AB上一點,作射線OC,將直角三角板ODE放置在直線上方(如圖①),使直角頂點與點O重合,一條直角邊OD重疊在射線OA上,將三角板繞點O旋轉
(1)當三角板旋轉到如圖②的位置時,若OD平分∠AOC,試說明OE也平分∠BOC.
(2)若OC⊥AB,垂足為點O(如圖③),請直接寫出與∠DOB互補的角
(3)若∠AOC=135°(如圖④),三角板繞點O按順時針從如圖①的位置開始旋轉,到OE邊與射線OB重合結束. 請通過操作,探索:在旋轉過程中,∠DOB∠COE的差是否發(fā)生變化?若不變,請求出這個差值;若變化,請用含有n(n為三角板旋轉的度數(shù))的代數(shù)式表示這個差.
【答案】(1)由OD平分∠AOC可得∠AOD=∠COD,由∠DOE=90°可得∠AOD+∠EOB=90°,∠COD+∠COE=90°,即可證得結論;(2)∠AOD、∠COE;
(3)①若n≤45°,∠DOB∠COE=135°,②若n>45°,∠DOB∠COE=225°2n
【解析】
試題分析:(1)由OD平分∠AOC可得∠AOD=∠COD,由∠DOE=90°可得∠AOD+∠EOB=90°,∠COD+∠COE=90°,即可證得結論;
(2)由OC⊥AB可得∠AOD+∠COD=90°,由∠DOE=90°可得∠COD+∠COE=90°,即可得到∠AOD=∠COE,從而可以求得與∠DOB互補的角;
(3)由于旋轉45°時,OE與OC重合,故要分n≤45°與n>45°兩種情況分析.
(1)∵OD平分∠AOC
∴∠AOD=∠COD
∵∠DOE=90°
∴∠AOD+∠EOB=90°,∠COD+∠COE=90°
∴∠COE=∠EOB
∴OE也平分∠BOC;
(2)∵OC⊥AB,∠DOE=90°
∴∠AOD+∠COD=90°,∠COD+∠COE=90°
∴∠AOD=∠COE
∴與∠DOB互補的角為∠AOD、∠COE;
(3)①若n≤45°,∠DOB∠COE=(180°-n)-(45°-n)=180°-n-45°+n=135°,
②若n>45°,∠DOB∠COE=(180°-n)-(n-45°)=180°-n-n+45°=225°2n.
科目:初中數(shù)學 來源: 題型:
【題目】一個七邊形棋盤如圖所示,7個頂點順序從0到6編號,稱為七個格子.一枚棋子放在0格,現(xiàn)在依逆時針移動這枚棋子,第一次移動1格,第二次移動2格,…,第n次移動n格.則不停留棋子的格子的編號有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, △ABC內(nèi)接于⊙O, AD⊥BC于D, AE是⊙O的直徑. 若AB=6, AC=8, AE=11, 求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC中, AO是∠BAC的角平分線, D為 AO上一點,以 CD為一邊且在 CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE.
(2)延長BE至Q, P為BQ上一點,連接 CP、CQ使 CP=CQ=5,若 BC=6,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】骰子是6個面上分別寫有數(shù)字1,2,3,4,5,6的小立方體,它任意兩對面上所寫的兩個數(shù)字之和為7.將這樣相同的幾個骰子按照相接觸的兩個面上的數(shù)字的積為6擺成一個幾何體,這個幾何體的三視圖如圖所示.已知圖中所標注的是部分面上的數(shù)字,則“*”所代表的數(shù)是( )
A. 2 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑是2,直線l與⊙O相交于A、B兩點,M、N是⊙O上的兩個動點,且在直線l的異側,若∠AMB=45°,則四邊形MANB面積的最大值是( )
A.2
B.4
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一種包裝盒的表面展開圖,將它圍起來可得到一個幾何體的模型.
(1)這個幾何體模型的名稱是
(2)如圖2是根據(jù)a,b,h的取值畫出的幾何體的主視圖和俯視圖(圖中實線表示的長方形),請在網(wǎng)格中畫出該幾何體的左視圖.
(3)若h=a+b,且a,b滿足 a2+b2﹣a﹣6b+10=0,求該幾何體的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com