【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為x=﹣1,且拋物線(xiàn)經(jīng)過(guò) A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求此時(shí)點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線(xiàn)對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x2﹣2x+3;(2)當(dāng)點(diǎn)M的坐標(biāo)為(﹣1,2)時(shí),點(diǎn)M到點(diǎn)A和點(diǎn)C的距離之和最;(3)P(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).
【解析】
(1)根據(jù)對(duì)稱(chēng)軸公式及A、C兩點(diǎn)坐標(biāo)代入即可求出拋物線(xiàn)的解析式;
(2)根據(jù)兩條線(xiàn)段之和最短時(shí)的作圖方法找到M即可,然后利用B、C的坐標(biāo)求出直線(xiàn)BC的解析式,利用BC和對(duì)稱(chēng)軸即可求出M的坐標(biāo);
(3)設(shè)P(﹣1,t),根據(jù)平面直角坐標(biāo)系中任意兩點(diǎn)之間的距離公式,即可表示出CB2,PB2和PC2,然后根據(jù)直角頂點(diǎn)分類(lèi)討論,利用勾股定理求t即可.
解:(1)根據(jù)題意得:,解得:,
∴拋物線(xiàn)的解析式為:y=﹣x2﹣2x+3.
(2)點(diǎn)A的對(duì)稱(chēng)點(diǎn)為B,連接BC,直線(xiàn)BC與對(duì)稱(chēng)軸x=﹣1的交點(diǎn)為M,則此時(shí)AM+MC的值最。
∵點(diǎn)A與點(diǎn)B關(guān)于x=﹣1對(duì)稱(chēng),A(1,0),
∴B(﹣3,0).
設(shè)BC的解析式為y=mx+n,將點(diǎn)B和點(diǎn)C的坐標(biāo)代入得:,解得:m=1,n=3.
∴直線(xiàn)BC的解析式為y=x+3.
將x=﹣1代入y=x+3得:y=2,
∴M(﹣1,2).
∴當(dāng)點(diǎn)M的坐標(biāo)為(﹣1,2)時(shí),點(diǎn)M到點(diǎn)A和點(diǎn)C的距離之和最小.
(3)設(shè)P(﹣1,t).
∵P(﹣1,t),B(﹣3,0),C(0,3),
∴CB2=18,PB2=(﹣1+3)2+t2=t2+4,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10.
①當(dāng)點(diǎn)B為直角頂點(diǎn)時(shí),則BC2+PB2=PC2,即18+t2+4=t2﹣6t+10,解得t=﹣2,
∴P(﹣1,﹣2).
②當(dāng)點(diǎn)C為直角頂點(diǎn)時(shí),BC2+PC2=PB2,即18+t2﹣6t+10=t2+4,解得t=4,
∴P(﹣1,4).
③當(dāng)點(diǎn)P為直角頂點(diǎn)時(shí),PC2+PB2=BC2,即t2+4+t2﹣6t+10=18,解得:t=或t=,
∴P(﹣1,)或(﹣1,).
綜上所述,點(diǎn)P的坐標(biāo)為P(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)與軸交于、兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為點(diǎn).
(1)求這條拋物線(xiàn)的解析式及直線(xiàn)的解析式;
(2)段上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),過(guò)點(diǎn)向軸引垂線(xiàn),垂足為,設(shè)的長(zhǎng)為,四邊形的面積為.求與之間的函數(shù)關(guān)系式及自變量的取值范圍;
(3)在線(xiàn)段上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)國(guó)務(wù)院房地產(chǎn)調(diào)控政策,使“居者有其屋”.某市加快了廉租房的建設(shè)力度,2013年市政府共投資3億元人民幣建設(shè)了廉租房12萬(wàn)平方米,2015年投資6.75億元人民幣建設(shè)廉租房,若在這兩年內(nèi)每年投資的增長(zhǎng)率相同.
(1)求每年市政府投資的增長(zhǎng)率;
(2)若這兩年內(nèi)的建設(shè)成本不變,問(wèn)2015年建設(shè)了多少萬(wàn)平方米廉租房?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、P、B為⊙O上的三點(diǎn),
(1)在優(yōu)弧AmB上求作一點(diǎn)C,使得 (尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)在(1)的條件下,若∠APB=120°,連接AC,BC,求證:△ABC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)圖象如圖所示,根據(jù)圖象可得:
(1)拋物線(xiàn)頂點(diǎn)坐標(biāo)_____.
(2)對(duì)稱(chēng)軸為_____.
(3)當(dāng)_____時(shí),y隨著x得增大而增大
(4)當(dāng)_____時(shí),y>0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn),且經(jīng)、兩點(diǎn).
求拋物線(xiàn)的解析式;
在拋物線(xiàn)的對(duì)稱(chēng)軸上,是否存在點(diǎn),使它到點(diǎn)的距離與到點(diǎn)的距離之和最小,如果存在求出點(diǎn)的坐標(biāo),如果不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹(shù)的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線(xiàn)上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,求樹(shù)高。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形中,G、H分別是、的中點(diǎn),E、O、F分別是對(duì)角線(xiàn)上的四等分點(diǎn),順次連接G、E、H、F.
(1)求證:四邊形是平行四邊形;
(2)當(dāng)平行四邊形滿(mǎn)足_______條件時(shí),四邊形是菱形;
(3)若,探究四邊形的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】凈覺(jué)寺享有“家東第一寺”的美譽(yù),是一座規(guī)模較大,布局嚴(yán)顏,結(jié)構(gòu)合理,獨(dú)具一格的古建筑群體,被國(guó)務(wù)院批準(zhǔn)列入第六批全國(guó)重點(diǎn)文物保護(hù)單位名單,某校社會(huì)實(shí)踐小組為了測(cè)量寺內(nèi)一古塔的高度,在地面上處垂直于地面豎立了高度為米的標(biāo)桿,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線(xiàn)上,測(cè)得米,將標(biāo)桿向后平移到點(diǎn)處,這時(shí)地面上的點(diǎn),標(biāo)桿的頂端點(diǎn),古塔的塔尖點(diǎn)正好在同一直線(xiàn)上(點(diǎn),點(diǎn),點(diǎn),點(diǎn)與古塔底處的點(diǎn)在同一直線(xiàn)上)這時(shí)測(cè)得米,米,請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算古塔的高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com