【題目】如圖,給正五邊形的頂點(diǎn)依次編號(hào)為1,23,4,5.若從某一頂點(diǎn)開始,沿正五邊形的邊順時(shí)針方向行走,頂點(diǎn)編號(hào)的數(shù)字是幾,就走幾個(gè)邊長,則稱這種走法為一次移位.如:小宇在編號(hào)為3的頂點(diǎn)上時(shí),那么他應(yīng)走3個(gè)邊長,即從3→4→5→1為第一次移位,這時(shí)他到達(dá)編號(hào)為1的頂點(diǎn);然后從1→2為第二次移位.若小宇從編號(hào)為2的頂點(diǎn)開始,第15移位后,則他所處頂點(diǎn)的編號(hào)為__

【答案】1

【解析】

根據(jù)移位的特點(diǎn)確定出前幾次的移位情況,從而找出規(guī)律,然后解答即可.

根據(jù)題意,小球從編號(hào)為2的頂點(diǎn)開始,第1次移位到點(diǎn)4,

2次移位到達(dá)點(diǎn)3

3次移位到達(dá)點(diǎn)1,

4次移位到達(dá)點(diǎn)2,

,

依此類推,4次移位后回到出發(fā)點(diǎn),

15÷4=3…3,

∴第15移位后,它所處頂點(diǎn)的編號(hào)與第3次移位到的編號(hào)相同,為1,

故答案為:1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點(diǎn)F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DEAM時(shí),判斷NE與AC的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列各數(shù)填在相應(yīng)的集合里.

,90,+4.3,|0.5|,﹣(+7),18%,(﹣34,﹣(﹣25,﹣62

正有理數(shù)集合:{}

正分?jǐn)?shù)集合:{};

負(fù)整數(shù)集合:{};

自然數(shù)集合:{}

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)若數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為ab,則有

AB兩點(diǎn)的中點(diǎn)表示的數(shù)為;

②當(dāng)ba時(shí),A、B兩點(diǎn)間的距離為ABba

(解決問題)數(shù)軸上兩點(diǎn)AB所表示的數(shù)分別為ab,且滿足|a+2|+b820200

1)求出A、B兩點(diǎn)的中點(diǎn)C表示的數(shù);

2)點(diǎn)D從原點(diǎn)O點(diǎn)出發(fā)向右運(yùn)動(dòng),經(jīng)過2秒后點(diǎn)DA點(diǎn)的距離是點(diǎn)DC點(diǎn)距離的2倍,求點(diǎn)D的運(yùn)動(dòng)速度是每秒多少個(gè)單位長度?

(數(shù)學(xué)思考)(3)點(diǎn)E以每秒1個(gè)單位的速度從原點(diǎn)O出發(fā)向右運(yùn)動(dòng),同時(shí),點(diǎn)M從點(diǎn)A出發(fā)以每秒7個(gè)單位的速度向左運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā),以每秒10個(gè)單位的速度向右運(yùn)動(dòng),PQ分別為ME、ON的中點(diǎn).思考:在運(yùn)動(dòng)過程中,的值是否發(fā)生變化?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F. 已知折痕AEcm,tanEFC=,則矩形ABCD的周長為______cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)選項(xiàng)中,不是y關(guān)于x的函數(shù)的是( )

A.|y|=x﹣1 B.y= C.y=2x﹣7 D.y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,BD=6,AD=3,則AOD= 度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn).點(diǎn)ECD上,且DE=2CE,連接BE.過點(diǎn)CCF⊥BE,垂足是F,連接OF,則OF的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報(bào)社為了解市民對(duì)“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個(gè)等級(jí),并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該市約有市民100000人,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市大約有多少人對(duì)“社會(huì)主義核心價(jià)值觀”達(dá)到“A.非常了解”的程度.

查看答案和解析>>

同步練習(xí)冊(cè)答案