【題目】如圖,在平面直角坐標系中,直線分別交軸,軸于A,B兩點,點C為OB的中點,點D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點A,B的坐標,并求直線AB與CD交點E的坐標;
(2)動點P從點C出發(fā),沿線段CD以每秒1個單位長度的速度向終點D運動;同時,動點N從點A出發(fā),沿線段AO以每秒1個單位長度的速度向終點O運動,過點P作,垂足為H,連接NP.設(shè)點P的運動時間為秒.
①若△NPH的面積為1,求的值;
②點Q是點B關(guān)于點A的對稱點,問是否有最小值,如果有,求出相應(yīng)的點P的坐標;如果沒有,請說明理由.
【答案】(1)A(-3,0),B(0,4),E(-1.5,2);(2)①1或2;②有最小值,P(-2,2).
【解析】
試題分析:(1)分別令x與y等于0,即可求出點A與點B的坐標,由四邊形AOCD為矩形,可知:CD∥x軸,進而可知:D、C、E三點的縱坐標相同,由點C為OB的中點,可求點C的坐標,然后將點C的縱坐標代入直線即可求直線AB與CD交點E的坐標;
(2)①分兩種情況討論,第一種情況:當0<t<2時;第二種情況:當2<t≤6時;
②由點Q是點B關(guān)于點A的對稱點,先求出點Q的坐標,然后連接PB,CH,可得四邊形PHCB是平行四邊形,進而可得:PB=CH,進而可將BP+PH+HQ轉(zhuǎn)化為CH+HQ+2,然后根據(jù)兩點之間線段最短可知:當點C,H,Q在同一直線上時,CH+HQ的值最小,然后求出直線CQ的關(guān)系式,進而可求出直線CQ與x軸的交點H的坐標,從而即可求出點P的坐標
試題解析:(1)∵直線分別交x軸,y軸于A,B兩點,
∴令x=0得:y=4,
令y=0得:x=-3,
∴A(-3,0),B(0,4),
∴OA=3,OB=4,
∵點C為OB的中點,
∴OC=2,
∴C(0,2),
∵四邊形AOCD為矩形,
∴OA=CD=3,OC=AD=2,CD∥OA(x軸),
∴D、C、E三點的縱坐標相同,
∴點E的縱坐標為2,將y=2代入直線得:x=-1.5,
∴E(-1.5,2);
(2)①分兩種情況討論:
第一種情況當0<t<1時,如圖1,
根據(jù)題意可知:經(jīng)過t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,
∴NH=2t-3,
∵S△NPH=PHNH,且△NPH的面積為1,
∴×2×(2t-3)=1,
解得:t=2;
第二種情況:當1<t≤3時,如圖2,
根據(jù)題意可知:經(jīng)過t秒,CP=t,AN=t,HO=CP=t,PH=OC=2,
∴AH=3-t,
∴HN=AN-AH=1.5t-2,
∵S△NPH=PHNH,且△NPH的面積為1,
∴×2×(1.5t-2)=1,
解得:t=2;
∴當t=1或2時,存在△NPH的面積為1;
②BP+PH+HQ有最小值,
連接PB,CH,HQ,則四邊形PHCB是平行四邊形,如圖3,
∵四邊形PHCB是平行四邊形,
∴PB=CH,
∴BP+PH+HQ=CH+HQ+2,
∵BP+PH+HQ有最小值,即CH+HQ+2有最小值,
∴只需CH+HQ最小即可,
∵兩點之間線段最短,
∴當點C,H,Q在同一直線上時,CH+HQ的值最小,
過點Q作QM⊥y軸,垂足為M,
∵點Q是點B關(guān)于點A的對稱點,
∴OA是△BQM的中位線,
∴QM=2OA=6,OM=OB=4,
∴Q(-6,-4),
設(shè)直線CQ的關(guān)系式為:y=kx+b,
將C(0,2)和Q(-6,-4)分別代入上式得:
,
解得:,
∴直線CQ的關(guān)系式為:y=x+2,
令y=0得:x=-2,
∴H(-2,0),
∵PH∥y軸,
∴P(-2,2).
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中∠BAC=90,E,F分別是BC,AC的中點,延長BA到點D,使AD=AB,連接DE,DF。
(1)試說明AF與DE互相平分;
(2)若BC=4,求DF的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是我國幾個城市某年一月份的平均氣溫,其中氣溫最低的城市是( )
城市 | 北京 | 武漢 | 廣州 | 哈爾濱 |
平均氣溫 | ﹣4.6 | 3.8 | 13.1 | ﹣19.4 |
A.北京
B.武漢
C.廣州
D.哈爾濱
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A.射線AB與射線BA表示同一條射線
B.連接兩點的線段叫做這兩點的距離
C.平角是一條直線
D.若∠1+∠2=90°,∠1+∠3=90°,則∠2=∠3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A. 有理數(shù)分為正數(shù)和負數(shù) B. 有理數(shù)的相反數(shù)一定比0小
C. 絕對值相等的兩個數(shù)不一定相等 D. 有理數(shù)的絕對值一定比0大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,必然事件是( )
A. 6月14日晚上能看到月亮 B. 早晨的太陽從東方升起
C. 打開初三數(shù)學書本,正好翻到第21頁 D. 任意擲一枚均勻的硬幣,正面朝上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某報亭老板以每份0.5元的價格從報社購進某種報紙500份,以每份0.8元的價格銷售x 份(x<500),未銷售完的報紙又以每份0.1元的價格由報社收回,這次買賣中該老板獲利y 元,則y與x的函數(shù)關(guān)系式為( 。
A. y=0.7x-200(x<500) B. y=0.8x-200(x<500)
C. y=0.7x-250(x<500) D. y=0.8x-250(x<500)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com