【題目】某校數(shù)學(xué)課外小組,在坐標紙上為學(xué)校的一塊空地設(shè)計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,當k≥2時,, ,[a]表示非負實數(shù)a的整數(shù)部分,例如[2.6]=2,[0.2]=0.按此方案,則第2018棵樹種植點的坐標為( )
A.(3,2018)B.(2,2019)C.(2,403)D.(3,404)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校創(chuàng)造節(jié)插花藝術(shù)比賽中同學(xué)們制作了若干個甲、乙、丙三種造型的花籃.甲種花籃由9朵玫瑰花、16朵水仙花和10朵百合花搭配而成,乙種花籃由6朵玫瑰花、8朵水仙花搭配而成.丙種花籃由6朵玫瑰花、12朵水仙花和10朵百合搭配而成.這些花籃一共用了240朵玫瑰花,300朵百合花,則水仙花一共用了_____朵.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是假命題的是( )
A. 在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形
B. 在△ABC中,若a2=(b+c) (b-c),則△ABC是直角三角形
C. 在△ABC中,若∠B=∠C=∠A,則△ABC是直角三角形
D. 在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在眉山市開展城鄉(xiāng)綜合治理的活動中,需要將、、三地的垃圾50立方米、40立方米、50立方米全部運往垃圾處理場、兩地進行處理.已知運往地的數(shù)量比運往地的數(shù)量的2倍少10立方米.
(1)求運往兩地的數(shù)量各是多少立方米?
(2)若地運往地立方米為整數(shù)),地運往地30立方米,地運往地的數(shù)量小于地運往地的2倍.其余全部運往地,且地運往地不超過12立方米,則、兩地運往、兩地哪幾種方案?
(3)已知從、、三地把垃圾運往、兩地處理所需費用如下表:
地 | 地 | 地 | |
運往地(元立方米) | 22 | 20 | 20 |
運往地(元立方米) | 20 | 22 | 21 |
在(2)的條件下,請說明哪種方案的總費用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.
圖1 圖2 圖3
(1)思路梳理
將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關(guān)系為 ;
(2)類比引申
如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+3與x軸交于A,B兩點,與y軸交于點C,點D,C關(guān)于拋物線的對稱軸對稱,直線AD與y軸相交于點E.
(1)求直線AD的解析式;
(2)如圖1,直線AD上方的拋物線上有一點F,過點F作FG⊥AD于點G,作FH平行于x軸交直線AD于點H,求△FGH周長的最大值;
(3)如圖2,點M是拋物線的頂點,點P是y軸上一動點,點Q是坐標平面內(nèi)一點,四邊形APQM是以PM為對角線的平行四邊形,點Q′與點Q關(guān)于直線AM對稱,連接M Q′,P Q′.當△PM Q′與□APQM重合部分的面積是□APQM面積的時,求□APQM面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小剛將一個正方形紙片剪去一個寬為5cm的長條后,再從剩下的長方形紙片上剪去一個寬為6cm的長條,如果兩次剪下的長條面積正好相等,求兩個所剪下的長條的面積之和為( )
A.215cm2B.250cm2C.300cm2D.320cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形AOB的直角頂點A在第四象限,頂點B(0,-2),點C(0,1),點D在邊AB上,連接CD交OA于點E,反比例函數(shù)的圖像經(jīng)過點D,若△ADE和△OCE的面積相等,則k的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,OA=3,OC=4,點B是y軸上一動點,以AC為對角線作平行四邊形ABCD.
(1)求直線AC的函數(shù)解析式;
(2)設(shè)點,記平行四邊形ABCD的面積為,請寫出與的函數(shù)關(guān)系式,并求當BD取得最小值時,函數(shù)的值;
(3)當點B在y軸上運動,能否使得平行四邊形ABCD是菱形?若能,求出點B的坐標;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com