先閱讀下列一段文字,然后解答問題
“要比較a與b的大小,可以先求出a與b的差,再看這個(gè)差是正數(shù)、負(fù)數(shù)還是零,由此可見,要比較兩個(gè)代數(shù)式的值的大小,只要考察它們的差就可以了.”
問題:比較9a2+5a+3與9a2-a-1的大。
分析:作差后,合并同類項(xiàng),得出最簡結(jié)果,然后討論即可判斷大小.
解答:解:9a2+5a+3-(9a2-a-1)=6a+4,
當(dāng)6a+4>0,即a>-
2
3
時(shí),9a2+5a+3>9a2-a-1;
當(dāng)6a+4=0,即a=-
2
3
時(shí),9a2+5a+3=9a2-a-1;
當(dāng)6a+4<0,即a<-
2
3
時(shí),9a2+5a+3<9a2-a-1.
點(diǎn)評(píng):本題考查了一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是仔細(xì)審題,理解題意,本題闡述的實(shí)際是“作差法”比較大小,同學(xué)們注意掌握這種表達(dá)小的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列一段文字,然后回答問題.
某運(yùn)輸部門確定:辦理托運(yùn),當(dāng)一件物品的重量不超過a千克(a<18)時(shí),需付基礎(chǔ)費(fèi)30元和保險(xiǎn)費(fèi)b元;為限制過重物品的托運(yùn),當(dāng)一件物品的重量超過a千克時(shí),除了付以上基礎(chǔ)費(fèi)和保險(xiǎn)費(fèi)外,超過部分每千克還需付c元超重費(fèi).設(shè)某件物品的重量為x千克,支付費(fèi)用為y元.
物品重量(千克) 支付費(fèi)用(元)
12 33
18 39
25 60
(1)當(dāng)0<x≤a時(shí),y=
 
,(用含b的代數(shù)式表示);當(dāng)x>a時(shí),y=
 
(用含x和a、b、c的代數(shù)式表示).
(2)甲、乙、丙三人各托運(yùn)了一件物品,重量與支付費(fèi)用如右表所示:①試根據(jù)以上提供的信息確定a、b、c的值,并寫出支付費(fèi)用y(元)與每件物品重量x(千克)的函數(shù)關(guān)系式.②試問在物品可拆分的情況下,用不超過120元的費(fèi)用能否托運(yùn)55千克物品?若能,請(qǐng)?jiān)O(shè)計(jì)出一種托運(yùn)方案,并求出托運(yùn)費(fèi)用;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先閱讀下列一段文字,然后解答問題.
已知:方程x-
1
x
=1
1
2
的解是x1=2,x2=-
1
2
;方程x-
1
x
=2
2
3
的解是xl=3,x2=-
1
3
;
方程x-
1
x
=3
3
4
的解是xl=4,x2=-
1
4
;方程x-
1
x
=4
4
5
的解是xl=5,x2=-
1
5

問題:觀察上述方程及其解,再猜想出方程x-
1
x
=10
10
11
的解,并寫出檢驗(yàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列一段文字,然后解答問題:
某運(yùn)輸部門規(guī)定:辦理托運(yùn),當(dāng)一種物品的重量不超過16千克時(shí),需付基礎(chǔ)費(fèi)30元和保險(xiǎn)費(fèi)a元;為限制過重物品的托運(yùn),當(dāng)一件物品超過16千克時(shí),除了付以上基礎(chǔ)費(fèi)和保險(xiǎn)費(fèi)外,超過部分每千克還需付b元超重費(fèi).設(shè)某件物品的重量為x千克.
(1)當(dāng)x≤16時(shí),支付費(fèi)用為
 
元(用含a的代數(shù)式表示);當(dāng)x≥16時(shí),支付費(fèi)用為
 
元(用含x和a、b的代數(shù)式表示)
(2)甲、乙兩人各托運(yùn)一件物品,物品重量和支付費(fèi)用如下表所示
物品重量(千克) 支付費(fèi)用(元)
18 39
25 60
①試根據(jù)以上提供的信息確定a,b的值.
②試問在物品可拆分的情況下,用不超過120元的費(fèi)用能否托運(yùn)50千克物品?若能,請(qǐng)?jiān)O(shè)計(jì)出其中一種托運(yùn)方案,并求出托運(yùn)費(fèi)用;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下列一段文字,在回答后面的問題.
已知在平面內(nèi)兩點(diǎn)P1(x1,y1)、P2(x2,y2),其兩點(diǎn)間的距離公式P1P2=
(x2-x1)2+(y2-y1)2
,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡化為|x2-x1|或|y2-y1|.
(1)已知A(2,4)、B(-3,-8),試求A、B兩點(diǎn)間的距離;
(2)已知A、B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為-1,試求A、B兩點(diǎn)間的距離.
(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為A(0,6)、B(-3,2)、C(3,2),你能判定此三角形的形狀嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案