如圖,已知二次函數(shù)的圖像開口向下,與x軸的一個交點為B,頂點A在直線y=x上,O為坐標(biāo)原點。
(1)證明:△AOB是等腰直角三角形;
(2)若△AOB的外接圓C的半徑為1,求該二次函數(shù)的解析式;
(3)對題(2)中所求出的二次函數(shù),在其圖像上是否存在點P (點P與點A不重合),使得△POC是以PC為腰的等腰三角形,若存在,請求出點P的坐標(biāo),若不存在,請說明理由。

解:(1)∵點A在直線y=x上,
∴設(shè)點A的坐標(biāo)為(m,m),
過點A作AD⊥x軸,交x軸于點D,
∵點A是二次函數(shù)圖像的頂點,
∴直線AD是其對稱軸,
∴點D是OB的中點,
∴OD=DB=AD,
∴△AOB是等腰直角三角形;
(2)∵△AOB是等腰直角三角形,且其外接圓C的半徑為1,
∴點C是OB的中點,(即點C就是上題中的點D),
且OC=CB=1,從而CA=1,
∴點A的坐標(biāo)為(1,1),
點B為(2,0),設(shè)該二次函數(shù)的解析式為:
∵B(2,0)在函數(shù)圖像上,
,
解得:a=-1,
,即;
(3)設(shè)存在點P(x,y),使得△POC是等腰三角形,
∵P(x,y)是二次函數(shù)圖像上的點,
,
可能一:PC=PO,則,從而P();
可能二:PC=OC,則PC=1,∴,即,

,
解得:y=0或y=1,
y=0時,點P在x軸上,△POC不存在,
y=1時,點P與點A重合,不合題意,
綜上,點P()。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求出二次函數(shù)的解析式;
(2)當(dāng)點P在直線OA的上方時,求線段PC的最大值;
(3)當(dāng)m>0時,探索是否存在點P,使得△PCO為等腰三角形,如果存在,求出P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(-2,0)和點C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當(dāng)△KCM的周長最小時,點K的坐標(biāo)為
6
7
,0)
6
7
,0)
;
(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動,當(dāng)P、Q兩點相遇時,它們都停止運(yùn)動,設(shè)P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運(yùn)動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點,與y軸交于點D(0,4).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的頂點C的坐標(biāo);
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案