【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點(diǎn),以BD為直徑的O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長(zhǎng).

【答案】(1)證明見解析(2)4

【解析】試題分析:(1)連接OE,證明∠OEA=90°即可;

2)連接OF,過點(diǎn)OOH⊥BFBFH,由題意可知四邊形OECH為矩形,利用垂徑定理和勾股定理計(jì)算出OH的長(zhǎng),進(jìn)而求出CE的長(zhǎng).

試題解析:(1)連接OE

∵OE=OB,

∴∠OBE=∠OEB,

∵BE平分∠ABC,

∴∠OBE=∠EBC,

∴∠EBC=∠OEB

∴OE∥BC,

∴∠OEA=∠C,

∵∠ACB=90°

∴∠OEA=90°

∴AC⊙O的切線;

2)連接OE、OF,過點(diǎn)OOH⊥BFBFH,

由題意可知四邊形OECH為矩形,

∴OH=CE

∵BF=6,

∴BH=3,

Rt△BHO中,OB=5,

∴OH=4,

∴CE=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在高速公路上的一個(gè)測(cè)速點(diǎn),儀器記錄下過往車輛的行駛速度(單位:千米/時(shí)),分析人員隨機(jī)選取了10個(gè)速度數(shù)據(jù)如下:9899,102,105,97,86,105,110,9591.求這組數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠ABC30°,AD平分∠CABBC于點(diǎn)D,CD1,延長(zhǎng)ACE,使AEAB,連接DE,BE

(1)BD的長(zhǎng);

(2)求證:DADE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有( 。

(1)、的平方根是±5;(2)、五邊形的內(nèi)角和是540°;(3)、拋物線y=x2+2x+4x軸無(wú)交點(diǎn);(4)、等腰三角形兩邊長(zhǎng)為6cm4cm,則它的周長(zhǎng)是16cm.

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=kx的圖象與反比例函數(shù)y=的圖象相交于A、B兩點(diǎn),且A點(diǎn)的橫坐標(biāo)為2.

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)在x軸上取關(guān)于原點(diǎn)對(duì)稱的P、Q兩點(diǎn),(P點(diǎn)在Q點(diǎn)的右邊),試問四邊形AQBP一定是一個(gè)什么形狀的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一中學(xué)以1班學(xué)生的地理測(cè)試成績(jī)?yōu)闃颖,?/span>A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制成兩幅統(tǒng)計(jì)圖,結(jié)合圖中信息解答下列問題:

(1)D級(jí)學(xué)生的人數(shù)占全班人數(shù)的百分比為________;

(2)扇形統(tǒng)計(jì)圖中C級(jí)所在扇形圓心角度數(shù)為__________;

(3)若該校共有1500人,則估計(jì)該校地理成績(jī)得A級(jí)的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).

(1)求拋物線的解析式;

(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);

(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求ACQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上的A,B,C三點(diǎn)所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點(diǎn)O的位置應(yīng)該在(

A.點(diǎn)A的左邊

B.點(diǎn)A與點(diǎn)B之間

C.點(diǎn)B與點(diǎn)C之間(靠近點(diǎn)B)

D.點(diǎn)C的右邊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7張相同的長(zhǎng)方形紙片(如圖1)按圖2所示的方式不重疊地放在長(zhǎng)方形ABCD內(nèi),未被覆蓋的部分恰好可以分割為兩個(gè)長(zhǎng)方形,面積分別為S1S2.已知小長(zhǎng)方形紙片的長(zhǎng)為a,寬為b,且ab.

(1)當(dāng)a=9,b=2,AD=30時(shí),S1S2=______.

(2)當(dāng)AD=30時(shí),用含a,b的式子表示S1S2.

(3)AB長(zhǎng)度不變,AD變長(zhǎng),將這7張小長(zhǎng)方形紙片按照同樣的方式放在新的長(zhǎng)方形ABCD內(nèi),而且S1S2的值總保持不變,則a,b滿足的關(guān)系是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案