【題目】如圖,在平面直角坐標系中,小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣3,4),B(﹣5,2),C(﹣2,1).

(1)畫出△ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到的△A'B'C';并直接寫出點A',B',C'的坐標:A'   ,B'   ,C'   

(2)(1)的條件下,求在旋轉(zhuǎn)的過程中,點A所經(jīng)過的路徑長,(結(jié)果保留π)

【答案】(1)(﹣4,﹣3),(﹣2,﹣5),(﹣1,﹣2);(2)π.

【解析】

(1)將三頂點分別繞原點O逆時針方向旋轉(zhuǎn)90°得到對應點,再順次連接即可得;

(2)利用弧長公式求解可得.

(1)如圖所示,A'B'C'即為所求,

由圖知,A′(﹣4,﹣3),B′(﹣2,﹣5),C′(﹣1,﹣2),

故答案為:(﹣4,﹣3),(﹣2,﹣5),(﹣1,﹣2);

(2)連接OA,OA=5,

所以點A所走的路徑長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點PPCx軸于點C,交拋物線于點D

(1)

①求拋物線的解析式;

②當線段PD的長度最大時,求點P的坐標;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學習小組做摸球?qū)嶒灒畬⑶驍噭蚝髲闹须S機摸出一個球,記下顏色,再把它放回袋中,不斷重復,下表是活動進行中記下的一組數(shù)據(jù)

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請你估計,當n很大時,摸到白球的頻率將會接近 (精確到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點P是這個菱形內(nèi)部或邊上的一點.若以P,B,C為頂點的三角形是等腰三角形,則P,A(P,A兩點不重合)兩點間的最短距離為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+(m+4)x-2(m+6)(m是常數(shù),m≠-8)x軸有兩個不同的交點A、B,點A、點B關于直線x=1對稱,拋物線的頂點為C.

(1)此拋物線的解析式;

(2)求點A、B、C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知點P是反比例函數(shù)y(x>0)圖象上一個動點,以P為圓心的圓始終與y軸相切,設切點為A

(1)如圖1,當P運動到與x軸相切,設切點為K,試判斷四邊形OKPA的形狀,并說明理由;

(2)如圖2,當P運動到與x軸相交,設交點為點B、C.當四邊形ABCP是菱形時,求出點AB、C的坐標

(3)(2)的條件下,求出經(jīng)過AB、C三點的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個木制的棱長為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點把正方體鋸開,得到27個棱長為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個口袋中任意取出一個小正方體,則這個小正方體的表面恰好涂有兩面顏色的概率是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

同步練習冊答案