【題目】小明跳起投籃,球出手時離地面 m,球出手后在空中沿拋物線路徑運(yùn)動,并在距出手點(diǎn)水平距離4m處達(dá)到最高4m.已知籃筐中心距地面3m,與球出手時的水平距離為8m,建立如圖所示的平面直角坐標(biāo)系.

(1)求此拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)此次投籃,球能否直接命中籃筐中心?若能,請說明理由;若不能,在出手的角度和力度都不變的情況下,球出手時距離地面多少米可使球直接命中籃筐中心?

【答案】
(1)解:設(shè)拋物線為y=a(x﹣4)2+4,

將(0, )代入,得a(0﹣4)2+4= ,

解得a=﹣ ,

∴所求的解析式為y=﹣ (x﹣4)2+4


(2)解:令x=8,得y=﹣ (8﹣4)2+4= ≠3,

∴拋物線不過點(diǎn)(8,3),

故不能正中籃筐中心;

∵拋物線過點(diǎn)(8, ),

∴要使拋物線過點(diǎn)(8,3),可將其向上平移 個單位長度,故小明需向上多跳 m再投籃(即球出手時距離地面3米)方可使球正中籃筐中心


【解析】(1)根據(jù)頂點(diǎn)坐標(biāo)(4,4),設(shè)拋物線的解析式為:y=a(x﹣4)2+4,由球出手時離地面 m,可知拋物線與y軸交點(diǎn)為(0, ),代入可求出a的值,寫出解析式;(2)先計算當(dāng)x=8時,y的值是否等于3,把x=8代入得:y= ,所以要想球經(jīng)過(8,3),則拋物線得向上平移3﹣ = 個單位,即球出手時距離地面3米可使球直接命中籃筐中心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為圓內(nèi)接四邊形,AB是直徑,MN切⊙O于C點(diǎn),∠BCM=38°,那么∠ABC的度數(shù)是(

A.38°
B.52°
C.68°
D.42°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市射擊隊為從甲、乙兩名運(yùn)動員中選拔一人參加省比賽,對他們進(jìn)行了六次測試,測試成績?nèi)绫恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8


(1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙的平均成績;
(2)已知甲六次成績的方差S2= ,試計算乙六次測試成績的方差;根據(jù)(1)、(2)計算的結(jié)果,你認(rèn)為推薦誰參加省比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).

(1)試作出△ABCC為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1B1C;

(2)以原點(diǎn)O為對稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個暗箱中裝有紅、黃、白三種顏色的乒乓球(除顏色外其余均相同).其中白球、黃球各1個,若從中任意摸出一個球是白球的概率是
(1)求暗箱中紅球的個數(shù).
(2)先從暗箱中任意摸出一個球記下顏色后放回,再從暗箱中任意摸出一個球,求兩次摸到的球顏色不同的概率(用樹形圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,已知點(diǎn) , .若平移點(diǎn) 到點(diǎn) ,使以點(diǎn) , , 為頂點(diǎn)的四邊形是菱形,則正確的平移方法是( )

A.向左平移1個單位,再向下平移1個單位
B.向左平移 個單位,再向上平移1個單位
C.向右平移 個單位,再向上平移1個單位
D.向右平移1個單位,再向上平移1個單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點(diǎn),△OMN的面積為10.若動點(diǎn)Px軸上,則PMPN的最小值是(  )

A. 6 B. 10 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于 BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形. (Ⅰ)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;
(Ⅱ)若菱形ABEF的周長為16,AE=4 ,求∠C的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設(shè)顧客預(yù)計累計購物元().

(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費(fèi)用;

(2)李明準(zhǔn)備購買500元的商品,你認(rèn)為他應(yīng)該去哪家超市?請說明理由;

(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費(fèi)用一樣?

查看答案和解析>>

同步練習(xí)冊答案