【題目】如圖,已知正方形 ABCD 的邊長為 10EBC 邊上運動,取 DE 的中點 G,EG 繞點 E 順時針旋轉(zhuǎn)90°得 EF,問 CE 長為多少時,A、C、F 三點在一條直線上( )

A.B.C.D.

【答案】C

【解析】

FBC的垂線,交BC延長線于N點,連接AF.只要證明RtFNERtECD,利用相似比21解決問題.再證明CNF是等腰直角三角形即可解決問題.

FBC的垂線,交BC延長線于N點,連接AF.


∵∠DCE=ENF=90°,DEC+NEF=90°,NEF+EFN=90°,
∴∠DEC=EFN,
RtFNERtECD,
DE的中點G,EGE順時針旋轉(zhuǎn)90°EF
∴兩三角形相似比為1:2,
∴可以得到CE=2NF,NE=CD=5.
AC平分正方形直角,
∴∠NFC=45°
∴△CNF是等腰直角三角形,
CN=NF
CE=NE=5=
故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一條直線與一條曲線有且只有一個交點,且曲線位于直線的同旁,稱之為直線與曲線相切,這條直線叫做曲線的切線,直線與曲線的唯一交點叫做切點.

1)如圖,在平面直角坐標系中,點為坐標原點,以點為圓心,5為半徑作圓,交軸的負半軸于點,求過點的圓 的切線的解析式;

2)若拋物線)與直線)相切于點,求直線的解析式;

3)若函數(shù)的圖象與直線相切,且當(dāng)時,的最小值為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示意圖,A點的坐標為(2,2),點C在線段OA上運動(點C不與O、A重合),過點CCDx軸于D,再以CD為一邊在CD右側(cè)畫正方形CDEF.連接AF并延長交x軸于B,連接OF.若△BEF與△OEF相似,則點B的坐標是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電動自行車已成為市民日常出行的首選工具。據(jù)某市品牌電動自行車經(jīng)銷商1至3月份統(tǒng)計,該品牌電動自行車1月份銷售150輛,3月銷售216輛.

(1)求該品牌電動車銷售量的月平均增長率;

(2)若該品牌電動自行車的進價為2300元,售價2800元,則該經(jīng)銷商1月至3月共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0,a,b,c為常數(shù))圖象如圖所示,根據(jù)圖象解答問題.

(1)寫出過程ax2+bx+c=0的兩個根.

(2)寫出不等式ax2+bx+c>0的解集.

(3)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BCAB,連結(jié)OC,弦ADOC,直線CDBA的延長線于點E

(1)求證:直線CD是⊙O的切線;

(2)若DE=2BCAD=5,求OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點A(1,2).直線lx軸于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求ABC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2米時,水面寬4米.若水面下降1米,則水面寬度將增加多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017四川省達州市,第16題,3分)如圖,矩形ABCD中,EBC上一點,連接AE,將矩形沿AE翻折,使點B落在CDF處,連接AF,在AF上取點O,以O為圓心,OF長為半徑作⊙OAD相切于點P.若AB=6,BC=,則下列結(jié)論:①FCD的中點;②⊙O的半徑是2;AE=CE.其中正確結(jié)論的序號是__________

查看答案和解析>>

同步練習(xí)冊答案