在△ABC中,AB=AC,E是AB的中點,以點E為圓心,EB為半徑畫弧,交BC于點D,連接ED并延長到點F,使DF=DE,連接FC,若∠B=70°,則∠F=    度.
【答案】分析:先兩次運用等腰三角形的性質(zhì)得出∠ACB=∠EDB,從而AC∥EF在得出平行四邊形,即易得.
解答:解:∵AB=AC,∠B=70°
∴∠B=∠ACB=70°
∵BE=DE,∴∠EDB=∠B=70°
∴∠ACB=∠EDB∴AC∥EF,∵DF=DE∴EF=2DE
∵E是AB的中點∴AB=2BE,∴AB=EF∴EF=AC
∴四邊形AEFC是平行四邊形
∴AB∥FC
∴∠F=∠BED=180°-∠B-∠BDE=40°.
故答案為40.
點評:解決本題的關鍵是根據(jù)所給條件得到四邊形AEFC是平行四邊形,進而根據(jù)平行求得所求角的度數(shù).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習冊答案