如圖,?ABCD中,E是AB延長線上的一點,DE交BC于F,求證:
DC
AE
=
CF
AD
分析:利用平行四邊形的性質(zhì)得出AE∥DC,∠A=∠C,進而利用相似三角形的判定與性質(zhì)得出即可.
解答:證明:∵四邊形ABCD是?ABCD,
∴AE∥DC,∠A=∠C,
∴∠CDF=∠E,
∴△DAE∽△FCD,
DC
AE
=
CF
AD
點評:此題主要考查了相似三角形的判定與性質(zhì),利用已知得出△DAE∽△FCD是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點,則圖中全等的三角形共有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC,BD相交于O點,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn),下列說法不正確的是(  )
A、當旋轉(zhuǎn)角為90°時,四邊形ABEF一定為平行四邊形
B、在旋轉(zhuǎn)的過程中,線段AF與EC總相等
C、當旋轉(zhuǎn)角為45°時,四邊形BEDF一定為菱形
D、當旋轉(zhuǎn)角為45°時,四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長線上一點,BE與AD交于點F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點E是AD的中點,延長CE交BA的延長線于點F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•浙江)如圖,?ABCD中,對角線AC和BD交于點O,過O作OE∥BC交DC于點E,若OE=5cm,則AD的長為
10
10
cm.

查看答案和解析>>

同步練習冊答案