【題目】如圖所示,AB是半圓O的直徑,AC是弦,點(diǎn)P沿BA方向,從點(diǎn)B運(yùn)動(dòng)到點(diǎn)A,速度為1cm/s,若AB=10cm,點(diǎn)O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過多長時(shí)間后,△APC是等腰三角形.
【答案】(1)AC=6;(2)t=4或5或s時(shí),△APC是等腰三角形;
【解析】
(1)過O作OD⊥AC于D,根據(jù)勾股定理求得AD的長,再利用垂徑定理即可求得AC的長;(2)分AC=PC、AP=AC、AP=CP三種情況求t值即可.
(1)如圖1,過O作OD⊥AC于D,
易知AO=5,OD=4,
從而AD==3,
∴AC=2AD=6;
(2)設(shè)經(jīng)過t秒△APC是等腰三角形,則AP=10﹣t
①如圖2,若AC=PC,過點(diǎn)C作CH⊥AB于H,
∵∠A=∠A,∠AHC=∠ODA=90°,
∴△AHC∽△ADO,
∴AC:AH=OA:AD,即AC: =5:3,
解得t=s,
∴經(jīng)過s后△APC是等腰三角形;
②如圖3,若AP=AC,
由PB=x,AB=10,得到AP=10﹣x,
又∵AC=6,
則10﹣t=6,解得t=4s,
∴經(jīng)過4s后△APC是等腰三角形;
③如圖4,若AP=CP,P與O重合,
則AP=BP=5,
∴經(jīng)過5s后△APC是等腰三角形.
綜上可知當(dāng)t=4或5或s時(shí),△APC是等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)A作AB⊥y軸于點(diǎn)B,點(diǎn)P在x軸上,△ABP的面積為4,則這個(gè)反比例函數(shù)的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對于已知拋物線,給出如下信息:;;;.其中錯(cuò)誤的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,圖象過點(diǎn)A(-3,0),對稱軸為直線x=﹣1,給出四個(gè)結(jié)論:①c>0;②若點(diǎn)B(-1.5,y1)、C(-2.5,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;③2a﹣b=0;④ <0.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是AB上的點(diǎn),過點(diǎn)D作DE⊥AB交BC于點(diǎn)F,交AC的延長線于點(diǎn)E,連接CD,∠DCA=∠DAC,則下列結(jié)論:①∠DCB=∠B;②CD=AB;③△ADC是等邊三角形;④若∠E=30°,則DE=EF+CF.正確的有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=DC,BF=CE,需補(bǔ)充一個(gè)條件,就能使△ABE≌△DCF,小明給出以下四個(gè)答案:①AE=DF;②AE∥DF;③AB∥DC;④∠A=∠D,其中正確的是( )
A.①②③④B.①②③C.①②D.①③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com