精英家教網(wǎng)如圖,在等腰直角三角形ABC中,AB=1,∠A=90°,點(diǎn)E為腰AC的中點(diǎn),點(diǎn)F在底邊BC上,且FE⊥BE,求△CEF的面積.
分析:過(guò)C作CD⊥CE與EF的延長(zhǎng)線(xiàn)交于D,構(gòu)成直角三角形可證出Rt△ABE∽R(shí)t△CED,然后證出其面積;或作FH⊥CE于H,設(shè)FH=h,Rt△EHF∽R(shí)t△BAE,然后求出其面積.
解答:解法1:如圖,過(guò)C作CD⊥CE與EF的延長(zhǎng)線(xiàn)交于D.(2分)
因?yàn)椤螦BE+∠AEB=90°,∠CED+∠AEB=90°,所以∠ABE=∠CED.
于是Rt△ABE∽R(shí)t△CED,(4分)
所以
S△CDE
S△EAB
=(
CE
AB
)2=
1
4
, 
CE
CD
=
AB
AE
=2
.((6分))
又∠ECF=∠DCF=45°,所以CF是∠DCE的平分線(xiàn),點(diǎn)F到CE和CD的距離相等,
所以
S△CEF
S△CDF
=
CE
CD
=2
.(8分)
所以S△CEF=
2
3
S△CDE=
2
3
×
1
4
S△ABE=
2
3
×
1
4
×
1
2
S△ABC=
1
24
.(10分)
精英家教網(wǎng)

解法2:如圖,作FH⊥CE于H,設(shè)FH=h.(2分)因?yàn)椤螦BE+∠AEB=90°,∠FEH+∠AEB=90°,所以∠ABE=∠FEH,
于是Rt△EHF∽R(shí)t△BAE.(4分)
因?yàn)?span id="qouqmil" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
EH
FH
=
AB
AE
. 即EH=2h,所以HC=
1
2
-2h

又因?yàn)镠C=FH,所以h=
1
2
-2h , h=
1
6
,(8分)
所以S△CEF=
1
2
EC×FH=
1
2
×
1
2
×
1
6
=
1
24
.(10分)
精英家教網(wǎng)
點(diǎn)評(píng):本題的關(guān)鍵是作出輔助線(xiàn),然后構(gòu)成直角三角形,用相似三角形的性質(zhì)求面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話(huà):銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)sad 60°的值為( B )
A.
1
2
;B.1;C.
3
2
;D.2
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話(huà):銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

(1)sad 的值為(  ▼  )

 A.             B.1                  C.                  D.2

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話(huà):銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

(1)sad 的值為( ▼ )
A.B.1 C.D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011屆北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話(huà):銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)
sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

(1)sad 的值為( ▼ )

A.B.1 C.D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話(huà):銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

類(lèi)似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

(1)sad 的值為(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案