【題目】長(zhǎng)為的春游隊(duì)伍,以的速度向東行進(jìn),如圖1和圖2,當(dāng)隊(duì)伍排尾行進(jìn)到位置時(shí),在排尾處的甲有一物品要送到排頭,送到后立即返回排尾,甲的往返速度均為,當(dāng)甲返回排尾后,他及隊(duì)伍均停止行進(jìn).設(shè)排尾從位置開(kāi)始行進(jìn)的時(shí)間為,排頭與的距離為
(1)當(dāng)時(shí),解答:
①求與的函數(shù)關(guān)系式(不寫(xiě)的取值范圍);
②當(dāng)甲趕到排頭位置時(shí),求的值;在甲從排頭返回到排尾過(guò)程中,設(shè)甲與位置的距離為,求與的函數(shù)關(guān)系式(不寫(xiě)的取值范圍)
(2)設(shè)甲這次往返隊(duì)伍的總時(shí)間為,求與的函數(shù)關(guān)系式(不寫(xiě)的取值范圍),并寫(xiě)出隊(duì)伍在此過(guò)程中行進(jìn)的路程.
【答案】(1)①;②;(2)與的函數(shù)關(guān)系式為:,此時(shí)隊(duì)伍在此過(guò)程中行進(jìn)的路程為.
【解析】
(1)①排頭與O的距離為S頭(m).等于排頭行走的路程+隊(duì)伍的長(zhǎng)300,而排頭行進(jìn)的時(shí)間也是t(s),速度是2m/s,可以求出S頭與t的函數(shù)關(guān)系式;
②甲趕到排頭位置的時(shí)間可以根據(jù)追及問(wèn)題的數(shù)量關(guān)系得出,代入求S即可;在甲從排頭返回到排尾過(guò)程中,設(shè)甲與位置O的距離為S甲(m)是在S的基礎(chǔ)上減少甲返回的路程,而甲返回的時(shí)間=總時(shí)間t-甲從排尾趕到排頭的時(shí)間,于是可以求S甲與t的函數(shù)關(guān)系式;
(2)甲這次往返隊(duì)伍的總時(shí)間為T(s),是甲從排尾追到排頭用的時(shí)間與從排頭返回排尾用時(shí)的和,可以根據(jù)追及問(wèn)題和相遇問(wèn)題的數(shù)量關(guān)系得出結(jié)果;在甲這次往返隊(duì)伍的過(guò)程中隊(duì)伍行進(jìn)的路程=隊(duì)伍速度×返回時(shí)間.
(1)①排尾從位置O開(kāi)始行進(jìn)的時(shí)間為t(s),則排頭也離開(kāi)原排頭t(s),∴S頭=2t+300;
②甲從排尾趕到排頭的時(shí)間為300÷(2v﹣v)=300÷v=300÷2=150 s,此時(shí)S頭=2t+300=600 m,甲返回時(shí)間為:(t﹣150)s,∴S甲=S頭﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;
因此,S頭與t的函數(shù)關(guān)系式為S頭=2t+300,當(dāng)甲趕到排頭位置時(shí),S的值為600m,在甲從排頭返回到排尾過(guò)程中,S甲與t的函數(shù)關(guān)系式為S甲=﹣4t+1200.
(2)T=t追及+t返回,在甲這次往返隊(duì)伍的過(guò)程中隊(duì)伍行進(jìn)的路程為:v400;
因此T與v的函數(shù)關(guān)系式為:T,此時(shí)隊(duì)伍在此過(guò)程中行進(jìn)的路程為400m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:y=kx+4與拋物線y=x2交于點(diǎn)A(x1,y1),B(x2,y2).
(1)求:;的值.
(2)過(guò)點(diǎn)(0,-4)作直線PQ∥x軸,且過(guò)點(diǎn)A、B分別作AM⊥PQ于點(diǎn)M,BN⊥PQ于點(diǎn)N,設(shè)直線l:y=kx+4交y軸于點(diǎn)F.求證:AF=AM=4+y1.
(3)證明:+為定值,并求出該值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=4,F是線段AC上一點(diǎn),過(guò)點(diǎn)A的⊙F交AB于點(diǎn)D,E是線段BC上一點(diǎn),且ED=EB,則EF的最小值為 ( )
A. 3 B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)等腰三角形三邊長(zhǎng)分別是,,3,且,是關(guān)于的一元二次方程的兩個(gè)根,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于題目:“如圖1,平面上,正方形內(nèi)有一長(zhǎng)為、寬為的矩形,它可以在正方形的內(nèi)部及邊界通過(guò)移轉(zhuǎn)(即平移或旋轉(zhuǎn))的方式,自由地從橫放移轉(zhuǎn)到豎放,求正方形邊長(zhǎng)的最小整數(shù).”甲、乙、丙作了自認(rèn)為邊長(zhǎng)最小的正方形,先求出該邊長(zhǎng),再取最小整數(shù).
甲:如圖2,思路是當(dāng)為矩形對(duì)角線長(zhǎng)時(shí)就可移轉(zhuǎn)過(guò)去;結(jié)果取.
乙:如圖3,思路是當(dāng)x為矩形外接圓直徑長(zhǎng)時(shí)就可移轉(zhuǎn)過(guò)去;結(jié)果取n=14.
丙:如圖4,思路是當(dāng)為矩形的長(zhǎng)與寬之和的倍時(shí)就可移轉(zhuǎn)過(guò)去;結(jié)果取.
下列正確的是( 。
A.甲的思路錯(cuò),他的值對(duì)
B.乙的思路和他的值都對(duì)
C.甲和丙的值都對(duì)
D.甲、乙的思路都錯(cuò),而丙的思路對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖
(1)求演員彈跳離地面的最大高度;
(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問(wèn)這次表演是否成功?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的對(duì)稱(chēng)軸為直線,與軸的一個(gè)交點(diǎn)坐標(biāo)為,其部分圖象如圖所示,下列結(jié)論:①拋物線過(guò)點(diǎn);②;③;④拋物線的頂點(diǎn)坐標(biāo)為;⑤當(dāng)時(shí),隨增大而增大.其中結(jié)論錯(cuò)誤的是( )
A.②③④B.②③⑤C.③⑤D.③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將二次函數(shù)的圖象向右平移1個(gè)單位,再向下平移2個(gè)單位,得到如圖所示的拋物線,該拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),,經(jīng)過(guò)點(diǎn)的一次函數(shù)的圖象與軸正半軸交于點(diǎn),且與拋物線的另一個(gè)交點(diǎn)為,的面積為5.
(1)求拋物線和一次函數(shù)的解析式;
(2)拋物線上的動(dòng)點(diǎn)在一次函數(shù)的圖象下方,求面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);
(3)若點(diǎn)為軸上任意一點(diǎn),在(2)的結(jié)論下,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如表:方程1、方程2、方程3、…是按一定規(guī)律排列的一列方程.
序號(hào) | 方程 | 方程的解 | |
1 | x2+x﹣2﹣=0 | x1=﹣2 | x2=1 |
2 | x2+2x﹣8﹣=0 | x1=﹣4 | x2=2 |
3 | x2+3x﹣18=0 | x1= | x2= |
… | … | … | … |
(1)解方程3,并將它的解填在表中的空白處;
(2)請(qǐng)寫(xiě)出這列方程中第10個(gè)方程,并用求根公式求其解.
(3)根據(jù)表中的規(guī)律寫(xiě)出第n個(gè)方程和這個(gè)方程的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com