【題目】一次函數(shù)的圖像與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,二次函數(shù)圖像經(jīng)過點(diǎn)A、B,與x軸相交于另一點(diǎn)C.
(1)求a、b的值;
(2)在直角坐標(biāo)系中畫出該二次函數(shù)的圖像;
(3)求∠ABC的度數(shù).
【答案】(1),b=6;(2)見解析;(3)∠ABC=45°
【解析】
(1)根據(jù)已知條件求得點(diǎn)A、點(diǎn)B的坐標(biāo),再代入二次函數(shù)的解析式,即可求得答案;
(2)根據(jù)列表、描點(diǎn)、依次連接即可畫出該二次函數(shù)的圖像;
(3)作AD⊥BC,利用兩點(diǎn)之間的距離公式求得的邊長,再運(yùn)用面積法求高的方法求得AD,最后用特殊角的三角函數(shù)值求得答案.
(1)∵一次函數(shù)的圖像與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,
∴令,則;令,則;
∴點(diǎn)A、點(diǎn)B的坐標(biāo)分別為: ,
∵二次函數(shù)圖像經(jīng)過點(diǎn)A、B,
∴,
解得:,
∴,b=6;
(2)由(1)知二次函數(shù)的解析式為:
對稱軸為直線: ,與x軸的交點(diǎn)為.
x | -2 | -1 | 0 | 0.5 | 1 | 2 | 3 | ||
y | 0 | 4 | 6 | 0.25 | 6 | 4 | 0 |
二次函數(shù)的圖像如圖:
(3)如圖,過A作AD⊥BC于D,
AB=,
CB=,
,
∵,
,
∴,
解得:,
在中,,
∵,
∴.
故∠ABC=45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④當(dāng)x>1時,y隨x的增大而增大,正確的是( )
A. ①③B. ②④C. ①②④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC為圓O的直徑,弦AD的延長線與過點(diǎn)C的切線交于點(diǎn)B,E為BC中點(diǎn),AC= ,BC=4.
(1)求證:DE為圓O的切線;
(2)求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,拋物線的對稱軸為直線,將直線繞著點(diǎn)順時針旋轉(zhuǎn)的度數(shù)后與該拋物線交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)是該拋物線上一點(diǎn)
(1)若,求直線的函數(shù)表達(dá)式
(2)若點(diǎn)將線段分成的兩部分,求點(diǎn)的坐標(biāo)
(3)如圖②,在(1)的條件下,若點(diǎn)在軸左側(cè),過點(diǎn)作直線軸,點(diǎn)是直線上一點(diǎn),且位于軸左側(cè),當(dāng)以,,為頂點(diǎn)的三角形與相似時,求的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中有點(diǎn)和某一函數(shù)圖象,過點(diǎn)作軸的垂線,交圖象于點(diǎn),設(shè)點(diǎn),的縱坐標(biāo)分別為,.如果,那么稱點(diǎn)為圖象的上位點(diǎn);如果,那么稱點(diǎn)為圖象的圖上點(diǎn);如果,那么稱點(diǎn)為圖象的下位點(diǎn).
(1)已知拋物線.
① 在點(diǎn)A(-1,0),B(0,-2),C(2,3)中,是拋物線的上位點(diǎn)的是 ;
② 如果點(diǎn)是直線的圖上點(diǎn),且為拋物線的上位點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;
(2)將直線在直線下方的部分沿直線翻折,直線的其余部分保持不變,得到一個新的圖象,記作圖象.⊙的圓心在軸上,半徑為.如果在圖象和⊙上分別存在點(diǎn)和點(diǎn)F,使得線段EF上同時存在圖象的上位點(diǎn),圖上點(diǎn)和下位點(diǎn),求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB、CD是⊙O的切線,A、B、E是切點(diǎn),CD分別交線段PA、PB于C、D兩點(diǎn),若∠APB=40°,則∠COD的度數(shù)為( 。
A.50°B.60°C.70°D.75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)(x>0)和(x>0)的圖象分別是和.設(shè)點(diǎn)P在上,PA∥y軸交于點(diǎn)A,PB∥x軸,交于點(diǎn)B,△PAB的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P為⊙O上一點(diǎn),過點(diǎn)P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ
(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。
(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,六個小朋友圍成一圈(面向圈內(nèi))做傳球游戲,規(guī)定:球不得傳給自己,也不得傳給左手邊的人.若游戲中傳球和接球都沒有失誤.
若由開始一次傳球,則和接到球的概率分別是 、 ;
若增加限制條件:“也不得傳給右手邊的人”.現(xiàn)在球已傳到手上,在下面的樹狀圖2中
畫出兩次傳球的全部可能情況,并求出球又傳到手上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com