如圖,拋物線1 :y=-x2平移得到拋物線,且經(jīng)過點O(0.0)和點A(4.0),的頂點為點B,它的對稱軸與相交于點C,設(shè)、與BC圍成的陰影部分面積為S,解答下列問題:

(1)求表示的函數(shù)解析式及它的對稱軸,頂點的坐標。

(2)求點C的坐標,并直接寫出S的值。

(3)在直線AC上是否存在點P,使得S△POAS?若存在,求點P的坐標;若不存在,請說明理由。

【參考公式:拋物線y=ax2+bx+c 的對稱軸是x=-

頂點坐標是(- ,)】.

解:(1)設(shè)l2的函數(shù)解析式為y=x2bxc

把(4.0)代入函數(shù)解析式,得

      解得

∴y=x2+4x

∵y=x2+4xx-2)2+4

l2的對稱軸是直線x=2,頂點坐標B(2,4)

(2)當x=2時,y=x24

C點坐標是(2,4)

S=8

(3)存在

設(shè)直線AC表示的函數(shù)解析式為ykxn

A(4,0),C(2,4)代入得

  解得

∴y=2x8

設(shè)△POA的高為h

SPOAOA·h=2h=4

設(shè)點P的坐標為(m,2m-8).

∵SPOAS 且S=8

∴SPOA×8=4

當點P軸上方時,得× 42m-8)=4,

解得m=5,

2m-8=2.

P的坐標為(5.2.

當點P軸下方時,得× 48-2m)=4.

解得m=3,

2m-8=-2

∴點P的坐標為(3,-2.

綜上所述,點P的坐標為(5,-2)或(3,-2)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應(yīng)的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點坐標為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標;
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標;
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關(guān)于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊答案