【題目】如圖,將ABC紙片沿DE折疊,使點(diǎn)A落在點(diǎn)A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+2的度數(shù)為( 。

A. 80°; B. 90°; C. 100°; D. 110°;

【答案】A

【解析】

連接AA.首先求出∠BAC,再證明∠1+∠2=2BAC即可解決問題.

連接AA′.

A'B平分∠ABC,A'C平分∠ACBBA'C=110°,∴∠ABC+∠ACB=70°,∴∠ABC+∠ACB=140°,∴∠BAC=180°﹣140°=40°.

∵∠1=DAA+∠DAA,2=EAA+∠EAA

∵∠DAA′=DAA,EAA′=EAA,∴∠1+∠2=2DAA+∠EAA′)=2BAC=80°.

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右圖,在中,,,垂足為點(diǎn),有下列說法:①點(diǎn)與點(diǎn)的距離是線段的長;②點(diǎn)到直線的距離是線段的長;③線段上的高;④線段上的高.

上述說法中,正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①倒數(shù)等于本身的數(shù)是±1;②互為相反數(shù)的兩個(gè)非零數(shù)的商為﹣1;③如果兩個(gè)數(shù)的絕對(duì)值相等,那么這兩個(gè)數(shù)相等;④有理數(shù)可以分為正有理數(shù)和負(fù)有理數(shù);⑤單項(xiàng)式﹣的系數(shù)是﹣,次數(shù)是6;⑥多項(xiàng)式a3+4a28是三次三項(xiàng)式,其中正確的個(gè)數(shù)是(  )

A. 2 個(gè)B. 3 個(gè)C. 4 個(gè)D. 5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,萬州市居民生活用水按階梯式水價(jià)計(jì)費(fèi),表是該市居民“一戶一表”生活用水階梯式計(jì)費(fèi)價(jià)格表的一部分信息:(水價(jià)計(jì)費(fèi)自來水銷售費(fèi)用污水處理費(fèi)用)

自來水銷售價(jià)格

污水處理價(jià)格

每戶每月用水量

單價(jià):元

單價(jià):元

17噸及以下

0.80

超過17噸不超過30噸的部分

0.80

超過30噸的部分

6.00

0.80

說明:①每戶產(chǎn)生的污水量等于該戶的用水量,②水費(fèi)=自來水費(fèi)+污水處理費(fèi);

已知小明家20133月份用水20噸,交水費(fèi)66元;5月份用水25噸,交水費(fèi)91元.

1)求的值.

2)隨著夏天的到來,用水量將增加。為了節(jié)省開支,小夢(mèng)計(jì)劃把6月份的水費(fèi)控制在不超過家庭月收入的2%,若小夢(mèng)加的月收入為9200元,則小王家6月份最多能用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板ABC中,∠ACB=90°,∠B=30°,AC=2 ,三角板繞直角頂點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在AB邊的起始位置上時(shí)即停止轉(zhuǎn)動(dòng),則B點(diǎn)轉(zhuǎn)過的路徑長為(
A. π
B. π
C.2π
D.3π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到 達(dá)圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時(shí)間 (分鐘)之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖像回答下列問題:

(1)小聰在圖書館查閱資料的時(shí)間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.

(2)請(qǐng)你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時(shí)間 (分鐘)之間的函數(shù)表達(dá)式;

(3)若設(shè)兩人在路上相距不超過 千米時(shí)稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時(shí)間共有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車專賣店銷售A,B兩種型號(hào)的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.

(1)求每輛A型車和B型車的售價(jià)各多少萬元.

(2)甲公司擬向該店購買A,B兩種型號(hào)的新能源汽車共6,購費(fèi)不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,∠A=60°,點(diǎn)P是射線AM上一動(dòng)點(diǎn)(與點(diǎn)A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點(diǎn)CD


1)求∠CBD的度數(shù);
2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB:∠ADB的比值是否隨之變化?若不變,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)找出變化規(guī)律;
3)當(dāng)點(diǎn)P運(yùn)動(dòng)到某處時(shí),∠ACB=ABD,求此時(shí)∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,解決提出的問題:

最短路徑問題:如圖(1),點(diǎn)AB分別是直線l異側(cè)的兩個(gè)點(diǎn),如何在直線l上找到一個(gè)點(diǎn)C,使得點(diǎn)C到點(diǎn)A,點(diǎn)B的距離和最短?我們只需連接AB,與直線l相交于一點(diǎn),可知這個(gè)交點(diǎn)即為所求.

如圖(2),如果點(diǎn)A,B分別是直線l同側(cè)的兩個(gè)點(diǎn),如何在l上找到一個(gè)點(diǎn)C,使得這個(gè)點(diǎn)到點(diǎn)A、點(diǎn)B的距離和最短?我們可以利用軸對(duì)稱的性質(zhì),作出點(diǎn)B關(guān)于的對(duì)稱點(diǎn)B,這時(shí)對(duì)于直線l上的任一點(diǎn)C,都保持CBCB,從而把問題(2)變?yōu)閱栴}(1).因此,線段AB與直線l的交點(diǎn)C的位置即為所求.

為了說明點(diǎn)C的位置即為所求,我們不妨在直線上另外任取一點(diǎn)C′,連接AC′,BC′,BC′.因?yàn)?/span>ABAC+CB,∴AC+CBAC'+CB,即AC+BC最。

任務(wù):

數(shù)學(xué)思考

1)材料中劃線部分的依據(jù)是   

2)材料中解決圖(2)所示問題體現(xiàn)的數(shù)學(xué)思想是   .(填字母代號(hào)即可)

A.轉(zhuǎn)化思想

B.分類討論思想

C.整體思想

遷移應(yīng)用

3)如圖,在RtABC中,∠C=90°,∠BAC=15°,點(diǎn)PC邊上的動(dòng)點(diǎn),點(diǎn)DAB邊上的動(dòng)點(diǎn),若AB8cm,則BP+DP的最小值為   cm

查看答案和解析>>

同步練習(xí)冊(cè)答案