【題目】如圖,一張直角三角形的紙片ABC,兩直角邊AC=6cm,BC=8cm.現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且AC與AE重合,求CD的長.
【答案】解:∵△ABC是直角三角形,AC=6cm,BC=8cm,
∴AB= = =10cm,
∵△AED是△ACD翻折而成,
∴AE=AC=6cm,
設(shè)DE=CD=xcm,∠AED=90°,
∴BE=AB﹣AE=10﹣6=4(cm),
在Rt△BDE中,BD2=DE2+BE2,
即(8﹣x)2=42+x2,
解得x=3.
故CD的長為3cm.
【解析】先由勾股定理求出AB的長,由題意知AE=AC=6cm,則BE=4,設(shè)DE=CD=xcm,在Rt△BDE中,由勾股定理求出x值即可答案.
【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對翻折變換(折疊問題)的理解,了解折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等.
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線y=x2-2x+c與y軸的交點為(0,-3),則下列說法不正確的是( )
A. 拋物線開口向上
B. 拋物線的對稱軸是x=1
C. 當x=1時,y的最大值為-4
D. 拋物線與x軸的交點為(-1,0),(3,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列現(xiàn)象中屬于平移的是( )
A.升降電梯從一樓升到五樓
B.鬧鐘的鐘擺運動
C.樹葉從樹上隨風飄落
D.方向盤的轉(zhuǎn)動
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(0,a),B(b,0),其中a,b滿足|a﹣2|+(b﹣3)2=0.
(1)求a,b的值;
(2)如果在第二象限內(nèi)有一點M(m,1),請用含m的式子表示四邊形ABOM的面積;
(3)在(2)條件下,當m=﹣ 時,在坐標軸的負半軸上是否存在點N,使得四邊形ABOM的面積與△ABN的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com