【題目】已知直線y=kx+b(k≠0)與直線y=﹣3x平行,且與兩坐標(biāo)軸圍成的三角形的面積為6,那么這條直線的解析式為_____.
【答案】y=﹣3x+6或y=﹣3x﹣6.
【解析】
利用兩直線平行問題得到直線解析式為y=﹣3x+b,再求出直線y=﹣3x+b與y軸的交點(diǎn)坐標(biāo)為(0,b),與x軸的交點(diǎn)坐標(biāo)為(,0),然后根據(jù)三角形面積公式得到×|b|×||=6,再解絕對值方程求出b即可得到直線解析式.
解:∵直線y=kx+b(k≠0)與直線y=﹣3x平行,
∴k=﹣3,
∴直線解析式為y=﹣3x+b,
當(dāng)x=0時,y=﹣3x+b=b,則直線y=﹣3x+b與y軸的交點(diǎn)坐標(biāo)為(0,b),
當(dāng)y=0時,﹣3x+b=0,解得x=,則直線y=﹣3x+b與x軸的交點(diǎn)坐標(biāo)為(,0),
∵直線與兩坐標(biāo)軸圍成的三角形的面積為6,
∴×|b|×||=6,解得b=±6,
∴直線解析式為y=﹣3x+6或y=﹣3x﹣6.
故答案為:y=﹣3x+6或y=﹣3x﹣6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+3分別與x,y軸交于點(diǎn)N,M,與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)A,若AM:MN=2:3,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人分兩次在同一糧店內(nèi)買糧食,兩次的單價不同,甲每次購糧100千克,乙每次購糧100元.若規(guī)定:誰兩次購糧的平均單價低,誰的購糧方式就合算.那么這兩次購糧( )
A. 甲合算 B. 乙合算
C. 甲、乙一樣 D. 要看兩次的價格情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中,且A、B、C.將其平移后得到,若A,B的對應(yīng)點(diǎn)是,,C的對應(yīng)點(diǎn)的坐標(biāo)是.
(1)在平面直角坐標(biāo)系中畫出△ABC;
(2)寫出點(diǎn)的坐標(biāo)是_____________,坐標(biāo)是___________;
(3)此次平移也可看作向________平移了____________個單位長度,再向_______平移了______個單位長度得到△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足(a+2)2+=0,過C作CB⊥x軸于B.
(1)求三角形ABC的面積;
(2)如圖②,若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)在y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車制造廠開發(fā)一款新式電動汽車,計劃一年生產(chǎn)安裝360輛.由于抽調(diào)不出足夠的熟練工來完成新式電動汽車的安裝,工廠決定招聘一些新工人.他們經(jīng)過培訓(xùn)后上崗,也能獨(dú)立進(jìn)行電動汽車的安裝.生產(chǎn)開始后,調(diào)研部門發(fā)現(xiàn):1名熟練和2名新工人每月可安裝12輛電動汽車;2名熟練工和3名新工人每月可安裝21輛電動汽車.
(1)每名熟練工和新工人每月分別可以安裝多少輛電動汽車?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?
(3)在(2)的條件下,工廠給安裝電動汽車的每名熟練工每月發(fā)2000元的工資,給每名新工人每月發(fā)1200元工資,那么工廠應(yīng)招聘多少名新工人,使新工人的數(shù)量多于熟練工,同時工廠每月支出的工資總額W(元)盡可能的少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,矩形ABCD中,AB=3cm,AD=9cm,將此矩形折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,則△ABE的面積為( )
A.6cm2
B.8cm2
C.10cm2
D.12cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校組織的游藝會上,投飛標(biāo)游藝區(qū)游戲區(qū)規(guī)則如下,如圖投到A區(qū)和B區(qū)的得分不同,A區(qū)為小圓內(nèi)部分,B區(qū)為大圓內(nèi)小圓外部分(擲中一次記一個點(diǎn))現(xiàn)統(tǒng)計小華、小明和小芳擲中與得分情況如圖所示.
(1)求擲中A區(qū)、B區(qū)一次各得多少分?
(2)依此方法計算小明的得分為多少分?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com