【題目】如圖,下列圖案均是由長度相同的火柴按一定的規(guī)律拼搭而成,圍成的每個小正方形面積為1.第一個圖案面積為2,第二個圖案面積為4,第三個圖案面積為7,…依此規(guī)律,第8個圖案面積為(

A. 34 B. 35 C. 36 D. 37

【答案】D

【解析】分析:求出前4個圖形中的所有正方形的面積,從而得到圖案中面積的規(guī)律,再根據(jù)規(guī)律寫出第n個圖案中的面積即可.

詳解:第1個圖案面積為1+1=2cm2,

2個圖案面積為1+2+1=4cm2,

3個圖案面積為1+2+3+1=7cm2,

4個圖案面積為1+2+3+4+1=11cm2,

∴第n個圖案面積為1+2+3+4+…+n+1=n(n+1)+1cm2

∴第8個圖案面積為1+2+3+4+5+6+7+8+1=37cm2

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某儲運部緊急調撥一批物資,調進物資共用4小時,調進物資2小時后開始調出物資(調進物資與調出物資的速度均保持不變).儲運部庫存物資S(噸)與時間t(小時)之間的函數(shù)關系如圖所示,這批物資從開始調進到全部調出需要的時間是_________小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】位于南岸區(qū)黃桷埡的文峰塔,有著平安寶塔之稱.某校數(shù)學社團對其高度 AB進行了測量.如圖,他們從塔底A的點B出發(fā),沿水平方向行走了13米,到達點C,然后沿斜坡CD繼續(xù)前進到達點D處,已知DC=BC.在點D處用測角儀測得塔頂A的仰角為42°(點A,B,C,D,E在同一平面內).其中測角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

A. 22.5 B. 24.0 C. 28.0 D. 33.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【閱讀理解】對于任意正實數(shù)a、b,因為≥0,所以 ≥0,所以≥2,只有當時,等號成立.

【獲得結論】在≥2ab均為正實數(shù))中,若為定值,則≥2,只有當時, 有最小值2

根據(jù)上述內容,回答下列問題:若>0,只有當= 時, 有最小值

【探索應用】如圖,已知A(-3,0),B0,-4),P為雙曲線0上的任意一點,過點PPCx軸于點C,PDy軸于點D.求四邊形ABCD面積的最小值,并說明此時四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃組織全校1500名師生外出參加集體活動.經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?/span>60兩種型號客車作為交通工具.

下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:

型號

載客量

租金單價

30

400

20

300

注:載客量指的是每輛客車最多可載該校師生的人數(shù).

學校租用型號客車輛,租車總費用為元.

(1)的函數(shù)解析式,請直接寫出的取值范圍;

(2)若要使租車總費用不超過22000元,一共有幾種租車方案?并結合函數(shù)性質說明哪種租車方案最省錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將四張邊長各不相同的正方形紙片按如圖方式放入矩形ABCD內(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設右上角與左下角陰影部分的周長的差為l.若知道l的值,則不需要測量就能知道周長的正方形的標號為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程時,配方錯誤的是( 。

A. x2+2x﹣99=0化為(x+12=100

B. 2x27x4=0化為

C. x2+8x+9=0化為(x+42=25

D. 3x24x2=0化為(x-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知M=(a24x310x210x5是關于x的二次多項式,且二次項系數(shù)和一次項系數(shù)分別為bc,在數(shù)軸上A、BC三點所對應的數(shù)分別是a、bc

1)則a ,b ,c

2)有一動點P從點A出發(fā),以每秒4個單位的速度向右運動,多少秒后,PA、B、C的距離和為40個單位?

3)在(2)的條件下,當點P移動到點B時立即掉頭,速度不變,同時點T和點Q分別從點A和點C出發(fā),向左運動,點T的速度1個單位/秒,點Q的速度5個單位/秒,設點P、Q、T所對應的數(shù)分別是xPxQ、xT,點Q出發(fā)的時間為t,當t時,求2|xPxT||xTxQ|2|xQxP|的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算

8+(-1)-6-(-1.25);

②()×(﹣36);

③﹣24+ 6×(﹣+(﹣6)× ;

5+15÷(-3)2×[-(-1)4]-2.

2)先化簡,再求值:求 的值,其中x,y = 1.

查看答案和解析>>

同步練習冊答案