【題目】已知三角形的第一條邊的長是,第二條邊長是第一條邊長的2倍少3,第三條邊比第二條邊短5。

(1)用含的式子表示這個三角形的周長;

(2)當,時,求這個三角形的周長;

(3)當,三角形的周長為 39時,求各邊長。

【答案】(1)5a+10b-11(2)29(3)10,17,12

【解析】

(1)根據(jù)題意表示出三角形周長即可;
(2)把ab的值代入計算即可求出值;
(3)把a=4,周長為39代入求出三角形各邊長即可.

解:(1)根據(jù)題意得:(a+2b)+[2(a+2b)-3]+ [2(a+2b)-3-5]=5a+10b-11;
(2)把a=2,b=3代入得:周長為10+30-11=29;
(3)把a=4,周長為39代入得:5a+10b-11=39,即b=3,
則三角形各邊長為10,17,12.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在Rt△ABC中,∠B=90°,AC=100cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(0<t≤25).過點DDF⊥BC于點F,連接DE,EF.

(1)求證:四邊形AEFD是平行四邊形;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,請說明理由;

(3)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點 的坐標為,以 A 為頂點的的兩邊始終與 軸交于 、兩點(左面),且

(1)如圖,連接,當 時,試說明:

(2)過點 軸,垂足為,當時,將沿所在直線翻折,翻折后邊軸于點 ,求點 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O在直線AB,A1,A2,A3,…在射線OA,B1,B2,B3,…在射線OB,圖中的每一個實線段和虛線段的長均為1個單位長度.一個動點MO點出發(fā),按如圖所示的箭頭方向沿著實線段和以O為圓心的半圓勻速運動,速度為每秒1個單位長度.按此規(guī)律,則動點M到達A101點處所需時間為(  ).

A. 5050π B. 5050π+101 C. 5055π D. 5055π+101

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:

因為∠1=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因為AB與DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因為∠3=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(如圖(1),一扇窗戶垂直打開,即OM⊥OP,AC是長度不變的滑動支架,其中一端固定在窗戶的點A處,另一端在線段OP上滑動,將窗戶OM按圖示方向向內(nèi)旋轉(zhuǎn)45°到達ON位置,如圖(2),此時,點A、C的對應(yīng)位置分別是點B、D,測量出∠ODB為37°,點D到點O的距離為28cm.
(1)求B點到OP的距離.
(2)求滑動支架AC的長. (參考數(shù)據(jù):sin37°= ,cos37°= ,tan37°=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀下面的內(nèi)容,再解決問題,

例題:若m2+2mn+2n2﹣6n+9=0,求mn的值.

解:∵m2+2mn+2n2﹣6n+9=0

m2+2mn+n2+n2﹣6n+9=0

m+n2+n﹣32=0

m+n=0n﹣3=0

m=﹣3,n=3

問題(1)若x2+2y2﹣2xy+4y+4=0,求xy的值.

2)已知ab,cABC的三邊長,滿足a2+b2=10a+8b﹣41,且cABC中最長的邊,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段AB,用尺規(guī)按要求作圖.(用黑色水筆描粗作圖痕跡,不要求寫作法)

(1)延長線段ABC,使BC=AB;

(2)延長線段BAD,使AD=2AB;

(3)若AB=2cm,則BD=__________cm,CD=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x,y的方程(n-2)x2m+3+3y5|n|-9=4.

(1)若方程是二元一次方程,求m2+n2的值;

(2)若方程是一元一次方程,求m,n的值或取值范圍.

查看答案和解析>>

同步練習冊答案