【題目】y= x+1是關(guān)于x的一次函數(shù),則一元二次方程kx2+2x+1=0的根的情況為( )
A.沒有實數(shù)根
B.有一個實數(shù)根
C.有兩個不相等的實數(shù)根
D.有兩個相等的實數(shù)根
【答案】A
【解析】解:
∵y= x+1是關(guān)于x的一次函數(shù),
∴ ≠0,
∴k﹣1>0,解得k>1,
又一元二次方程kx2+2x+1=0的判別式△=4﹣4k,
∴△<0,
∴一元二次方程kx2+2x+1=0無實數(shù)根,
所以答案是:A.
【考點精析】通過靈活運用求根公式和一次函數(shù)的概念,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根;一般地,如果y=kx+b(k,b是常數(shù),k不等于0),那么y叫做x的一次函數(shù)即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖1至圖3中,點B是線段AC的中點,點D是線段CE的中點.四邊形BCGF和四邊形CDHN都是正方形.AE的中點是M.
(1)如圖1,點E在AC的延長線上,點N與點G重合時,點M與點C重合,求證:FM=MH,F(xiàn)M⊥MH;
(2)將圖1中的CE繞點C順時針旋轉(zhuǎn)一個銳角,得到圖2,求證:△FMH是等腰直角三角形;
(3)將圖2中的CE縮短到圖3的情況,△FMH還是等腰直角三角形嗎?(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一個均勻的轉(zhuǎn)盤被平均分成六等份,分別標(biāo)有這六個數(shù)字,轉(zhuǎn)動轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字(當(dāng)指針恰好指在分界線上時,不記,重轉(zhuǎn)).
(1)轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于的概率是多少;
(2)現(xiàn)有兩張分別寫有和的卡片,要隨機轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,與兩張卡片上的數(shù)字分別作為三條線段的長度.
①這三條線段能構(gòu)成三角形的概率是多少?
②這三條線段能構(gòu)成等腰三角形的概率是多少?(注:要求寫出各種可能情況)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點是直線上一點,點是直線上一點,且MN//PQ.和的平分線交于點.
(1)求證:;
(2)過點作直線交于點(不與點重合),交于點E,
①若點在點的右側(cè),如圖2,求證:;
②若點在點的左側(cè),則線段、、有何數(shù)量關(guān)系?直接寫出結(jié)論,不說理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發(fā)向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和 個單位長度/秒,設(shè)運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.
(1)求點A,點B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長;
(3)當(dāng)四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點M、N分別表示數(shù)m,n. 則點M,N 之間的距離為|m-n|.已知點A,B,C,D在數(shù)軸上分別表示的數(shù)為a,b,c,d.且|a-c|=|b-c|=|d-a|=1 (a≠b),則線段BD的長度為( )
A.3.5B.0.5C.3.5或0.5D.4.5或0.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com