年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
x1+x2 |
2 |
y1+y2 |
2 |
x1+x2 |
2 |
y1+y2 |
2 |
|
|
(x2-x1)2+(y2-y1)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(湖南益陽卷)數(shù)學(xué)(解析版) 題型:解答題
閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點(diǎn)坐標(biāo)為.由勾股定理得,所以A、B兩點(diǎn)間的距離公式為.
注:上述公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
.閱讀材料:如圖9,在平面直角坐標(biāo)系中,、兩點(diǎn)的坐標(biāo)分別為,
,中點(diǎn)的坐標(biāo)為.由,得,
同理,所以的中點(diǎn)坐標(biāo)為.
由勾股定理得,所以、兩點(diǎn)
間的距離公式為.
注:上述公式對(duì)、在平面直角坐標(biāo)系中其它位置也成立.
解答下列問題:
如圖10,直線:與拋物線交于、兩點(diǎn),為的中點(diǎn),
過作軸的垂線交拋物線于點(diǎn).
(1)求、兩點(diǎn)的坐標(biāo)及點(diǎn)的坐標(biāo);
(2)連結(jié),求證為直角三角形;
(3)將直線平移到點(diǎn)時(shí)得到直線,求兩
直線與的距離.
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年湖南省益陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
閱讀材料:
如圖(1),在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為P,求證:S四邊形ABCD=AC·BD.
證明:∵AC⊥BD ∴
∴S四邊形ABCD=S△ACD+S△ABC=AC·PD+AC·PB=AC(PD+PB)=AC ·BD
解答問題:
(1)上述證明得到的性質(zhì)可敘述為: ▲
(2)已知:如圖(2),等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com