【題目】在數(shù)學實驗課上,李靜同學剪了兩張直角三角形紙片,進行如下的操作:
操作一:如圖1,將Rt△ABC紙片沿某條直線折疊,使斜邊兩個端點A與B重合,折痕為DE.
(1)如果AC=5cm,BC=7cm,可得△ACD的周長為 ;
(2)如果∠CAD:∠BAD=1:2,可得∠B的度數(shù)為 ;
操作二:如圖2,李靜拿出另一張Rt△ABC紙片,將直角邊AC沿直線CD折疊,使點A與點E重合,若AB=10cm,BC=8cm,請求出BE的長.
【答案】操作(一)(1)12cm.(2)36°;操作(二):2.8cm.
【解析】試題分析:操作一:(1)由翻折的性質可知:BD=AD,于是AD+DC=BC,從而可知△ACD的周長=BC+AC;
(2)設∠CAD=x,則∠BAD=2x,由翻折的性質可知∠CBA=2x,然后根據(jù)直角三角形兩銳角互余可知:x+2x+2x=90°.
操作二:先利用勾股定理求得AC的長,然后利用面積法求得DC的長,在Rt△ACD中,利用勾股定理可求得AD的長,由翻折的性質可知:DE=DA,最后根據(jù)BE=AB﹣DE﹣AD計算即可.
解:操作一:(1)翻折的性質可知:BD=AD,
∴AD+DC=BC=7.
∴△ACD的周長=CD+AD+AC=BC+AC=7+5=12cm.
故答案為:12cm.
(2)設∠CAD=x,則∠BAD=2x.
由翻折的性質可知:∠BAD=∠CBA=2x,
∵∠B+∠BAC=90°,
∴x+2x+2x=90°.
解得;x=18°.
∴2x=2×18°=36°.
∴∠B=36°.
故答案為:36°.
操作二:在Rt△ABC中,AC==6.
由翻折的性質可知:ED=AD,DC⊥AB.
∵,
∴10CD=6×8.
∴CD=4.8.
在Rt△ADC中,AD===3.6.
∴EA=3.6×2=7.2.
∴BE=10﹣7.2=2.8.
科目:初中數(shù)學 來源: 題型:
【題目】中國是世界上13個貧水國家之一.某校有800名在校學生,學校為鼓勵學生節(jié)約用水,展開“珍惜水資源,節(jié)約每一滴水”系列教育活動,為響應學校號召,數(shù)學小組做了如下調查:
小亮為了解一個擰不緊的水龍頭的滴水情況,記錄了滴水時間和燒杯中的水面高度,如圖1.小明設計了調查問卷,在學校隨機抽取一部分學生進行了問卷調查,并制作出統(tǒng)計圖.如圖2和圖3.結合圖2和圖3回答下列問題:
(1)參加問卷調查的學生人數(shù)為 60 人,其中選C的人數(shù)占調查人數(shù)的百分比為 .
(2)在這所學校中選“比較注意,偶爾水龍頭滴水”的大概有 人.若在該校隨機抽取一名學生,這名學生選B的概率為 .
請結合圖1解答下列問題:
(3)在“水龍頭滴水情況”圖中,水龍頭滴水量(毫升)與時間(分)可以用我們學過的哪種函數(shù)表示?請求出函數(shù)關系式 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn),如圖1,在正方形ABCD中,點E為CD的中點,過點D作AE的垂線,垂足為F與AC、BC分別交于點G,點H,則= .
(2)類比探究;如圖2,在矩形ABCD中,,點E為CD的中點,過點D作AE的垂線,垂足為F,與AC、BC分別交于點G,點H,試探究的值,并寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中, 厘米, 厘米,點D為AB的中點.如果點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______ 厘米/秒時,能夠在某一時刻使△BPD與△CQP全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A,B是數(shù)軸上的一點,AB=12,動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t(t>0)秒.
(1)寫出數(shù)軸上點B表示的數(shù),經t秒后點P走過的路程為(用含t的代數(shù)式表示);
(2)若在動點P運動的同時另一動點Q從點B也出發(fā),并以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,問經多少時間點P就能追上點Q?
(3)若M為AP的中點,N為BP的中點,點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請你畫出圖形,并求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列關于x的單項式,探究其規(guī)律:x,3x2 , 5x3 , 7x4 , 9x5 , 11x6 , ….按照上述規(guī)律,第2016個單項式是( )
A.4031x2015
B.4030x2016
C.4029x2015
D.4031x2016
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車從A地出發(fā)向南行駛了48千米后到達B地,又從B地向北行駛20千米到達C地,則A地與C地的距離是( 。.
A.68千米
B.28千米
C.48千米
D.20千米
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com