【題目】如圖,在矩形中, , ,的中點(diǎn),若邊上的兩個(gè)動(dòng)點(diǎn),且,若想使得四邊形的周長(zhǎng)最小,則的長(zhǎng)度應(yīng)為__________.

【答案】

【解析】

要使四邊形APQE的周長(zhǎng)最小,由于AEPQ都是定值,只需AP+EQ的值最小即可.為此,先在BC邊上確定點(diǎn)PQ的位置,可在AD上截取線段AF=DE=2,作F點(diǎn)關(guān)于BC的對(duì)稱點(diǎn)G,連接EGBC交于一點(diǎn)即為Q點(diǎn),過(guò)A點(diǎn)作FQ的平行線交BC于一點(diǎn),即為P點(diǎn),則此時(shí)AP+EQ=EG最小,然后過(guò)G點(diǎn)作BC的平行線交DC的延長(zhǎng)線于H點(diǎn),證即可.

解:如圖,在AD上截取線段AF=DE=2,作F點(diǎn)關(guān)于BC的對(duì)稱點(diǎn)G,連接EGBC交于一點(diǎn)即為Q點(diǎn),過(guò)A點(diǎn)作FQ的平行線交BC于一點(diǎn),即為P點(diǎn),過(guò)G點(diǎn)作BC的平行線交DC的延長(zhǎng)線于H點(diǎn).
ECD的中點(diǎn),∴CE=2

GH=DF=5,EH=2+4=6,∠H=90°
BC//GH

,
,

,
CQ=

BP=CB-PQ-CQ=7-2-
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,點(diǎn)O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點(diǎn)D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測(cè)得AC、BCAB的夾角分別為45°68°,若點(diǎn)C到地面的距離CD28cm,坐墊中軸E處與點(diǎn)B的距離BE4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E,F分別在矩形ABCD的邊AB,BC上,連接EF,將BEF沿直線EF翻折得到HEF,AB8BC6,AEEB31

1)如圖1,當(dāng)∠BEF45°時(shí),EH的延長(zhǎng)線交DC于點(diǎn)M,求HM的長(zhǎng);

2)如圖2,當(dāng)FH的延長(zhǎng)線經(jīng)過(guò)點(diǎn)D時(shí),求tanFEH的值;

3)如圖3,連接AH,HC,當(dāng)點(diǎn)F在線段BC上運(yùn)動(dòng)時(shí),試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量山坡上旗桿CD的高度,小明在點(diǎn)A處利用測(cè)角儀測(cè)得旗桿頂端D的仰角為37°,然后他沿著正對(duì)旗桿CD的方向前進(jìn)17m到達(dá)B點(diǎn)處,此時(shí)測(cè)得旗桿頂部D和底端C的仰角分別為58°30°,求旗桿CD的高度(結(jié)果精確到0.1m).

(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.6,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75 ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】公司有345臺(tái)電腦需要一次性運(yùn)送到某學(xué)校,計(jì)劃租用甲、乙兩種貨車共8輛已知每輛甲種貨車一次最多運(yùn)送電腦45臺(tái)、租車費(fèi)用為400元,每輛乙種貨車一次最多運(yùn)送電腦30臺(tái)、租車費(fèi)用為280

(Ⅰ)設(shè)租用甲種貨車輛(為非負(fù)整數(shù)),試填寫下表.

表一:

租用甲種貨車的數(shù)量/輛

3

7

租用的甲種貨車最多運(yùn)送電腦的數(shù)量/臺(tái)

135

租用的乙種貨車最多運(yùn)送電腦的數(shù)量/臺(tái)

150

表二:

租用甲種貨車的數(shù)量/輛

3

7

租用甲種貨車的費(fèi)用/元

2800

租用乙種貨車的費(fèi)用/元

280

(Ⅱ)給出能完成此項(xiàng)運(yùn)送任務(wù)的最節(jié)省費(fèi)用的租車方案,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EAD的中點(diǎn),點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)為GG在矩形ABCD內(nèi)部),連接BG并延長(zhǎng)交CDF

1)如圖1,當(dāng)ABAD時(shí),

根據(jù)題意將圖1補(bǔ)全;

直接寫出DFGF之間的數(shù)量關(guān)系.

2)如圖2,當(dāng)ABAD時(shí),如果點(diǎn)F恰好為DC的中點(diǎn),求的值.

3)如圖3,當(dāng)ABAD時(shí),如果DCnDF,寫出求的值的思路(不必寫出計(jì)算結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+c經(jīng)過(guò)點(diǎn)(1,0),以下結(jié)論:①2a+b0;②a+c0;③4a+2b+c0;④b25a22ac.其中正確的是( )

A. ①②B. ③④C. ②③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0),B0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點(diǎn)的坐標(biāo)為( 。

A. 8076,0B. 8064,0C. 8076D. 8064,

查看答案和解析>>

同步練習(xí)冊(cè)答案