在小學(xué)學(xué)習(xí)中,我們已經(jīng)知道三角形的三個角之和等于180°,如圖,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分線,AD⊥BC于D.
(1)求∠DAE的度數(shù);
(2)判定AD是∠EAC的平分線嗎?說明理由.
(3)若∠C=嵐,∠B=獍,求∠DAE的度數(shù).(∠C>∠B)
解:(1)∵∠B=40°,∠C=70°,
∴在△ABC中,∠BAC=180°﹣38°﹣70°=72°,
又∵AE是∠BAC的角平分線,
∴∠EAC=∠BAC=36°,
又∵AD是BC邊上的高,
∴AD⊥BC,
∴∠ADC=90°,
∴在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=20°,
∴∠DAE=∠EAC﹣∠DAC=36°﹣20°=16°
(2)∵∠DAE=16°,∠CAD=20°
∴AD不是∠EAC的平分線.
(3)∵AD是△ABC的高,
∴∠ADC=90°,
∵∠C=β,
∴∠DAC=90°﹣β,
∵∠B=α,∠C=β,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣α﹣β,
∵AE是△ABC的角平分線,
∴∠EAC=∠BAC=(180°﹣α﹣β)=90°﹣α﹣β,
∵∠C>∠B
∴當(dāng)α>β時,∠DAE=∠DAC﹣∠EAC=90°﹣β﹣(90°﹣α﹣β)=α﹣β=(α﹣β).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、在過去的學(xué)習(xí)中,我們已經(jīng)接觸了很多代數(shù)恒等式,其實這些代數(shù)恒等式可以用一些硬紙片拼成的圖形的面積來解釋這些代數(shù)式.例如,圖可以用來解釋4a2=(2a)2請問可以用圖來解釋的恒等式是:
(a+b)2=a2+2ab+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在數(shù)學(xué)課的學(xué)習(xí)中,我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用圖形的面積來解釋這些代數(shù)恒等式.如圖①可以解釋恒等式(2b)2=4b2;

(1)如圖②可以解釋恒等式a2+2ab+b2=
(a+b)2
(a+b)2

(2)如圖③是由4個長為a,寬為b的長方形紙片圍成的正方形,①利用面積關(guān)系寫出一個代數(shù)恒等式:
①(a+b)2=(a-b)2+4ab或 (a+b)2-(a-b)2=4ab
或(a-b)2=(a+b)2-4ab
①(a+b)2=(a-b)2+4ab或 (a+b)2-(a-b)2=4ab
或(a-b)2=(a+b)2-4ab

②若長方形紙片的面積為1,且長比寬長3,求長方形的周長(其中a、b都是正數(shù),結(jié)果可保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在小學(xué)學(xué)習(xí)中,我們已經(jīng)知道三角形的三個角之和等于180°,如圖,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分線,AD⊥BC于D.
(1)求∠DAE的度數(shù);
(2)判定AD是∠EAC的平分線嗎?說明理由.
(3)若∠C=α°,∠B=β°,求∠DAE的度數(shù).(∠C>∠B)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在小學(xué)學(xué)習(xí)中,我們已經(jīng)知道三角形的三個角之和等于180°,如圖,在三角形ABC中,∠C=70°,∠B=38°,AE是∠BAC的平分線,AD⊥BC于D.
(1)求∠DAE的度數(shù);
(2)判定AD是∠EAC的平分線嗎?說明理由.
(3)若∠C=α°,∠B=β°,求∠DAE的度數(shù).(∠C>∠B)

查看答案和解析>>

同步練習(xí)冊答案