【題目】某景區(qū)一電瓶小客車接到任務從景區(qū)大門出發(fā),向東走2千米到達A景區(qū),繼續(xù)向東走2.5千米到達B景區(qū),然后又回頭向西走8.5千米到達C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點,向東為正方向,以1個單位長表示1千米,建立如圖所示的數(shù)軸,請在數(shù)軸上表示出上述A、B、C三個景區(qū)的位置.

(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充好電而途中不充電的情況下完成此次任務?請計算說明.

【答案】(1)詳見解析;(2)該電瓶車不能在一開始充好電而途中不充電的情況下完成此次任務.

【解析】試題分析:(1)根據(jù)數(shù)軸的三要素畫出數(shù)軸,并根據(jù)題意在數(shù)軸上表示出A、B、C的位置;

(2)計算出電瓶車一共走的路程,即可解答.

試題解析:(1)如圖,

(2)電瓶車一共走的路程為:|+2|+|2.5|+|﹣8.5|+|+4|=17(千米),

17>15,

∴該電瓶車不能在一開始充好電而途中不充電的情況下完成此次任務.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,曲線AB是頂點為B,與y軸交于點A的拋物線 的一部分,曲線BC是雙曲線的一部分,由點C開始不斷重復“A-B-C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上, =_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù)a<1,則下列事件中是必然事件的是

A. 3a+1>0 B. a3>0 C. a+1>0 D. a﹣3<0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在數(shù)軸上點, 所對應的數(shù)是

對于關于的代數(shù)式,我們規(guī)定:當有理數(shù)在數(shù)軸上所對應的點為之間(包括點, )的任意一點時,代數(shù)式取得所有值的最大值小于等于,最小值大于等于,則稱代數(shù)式,是線段的封閉代數(shù)式.

例如,對于關于的代數(shù)式,當時,代數(shù)式取得最大值是;當時,代數(shù)式取得最小值是,所以代數(shù)式是線段的封閉代數(shù)式.

問題:()關于代數(shù)式,當有理數(shù)在數(shù)軸上所對應的點為之間(包括點, )的任意一點時,取得的最大值和最小值分別是__________.

所以代數(shù)式__________(填是或不是)線段的封閉代數(shù)式.

)以下關的代數(shù)式:

;;

是線段的封閉代數(shù)式是__________,并證明(只需要證明是線段的封閉代數(shù)式的式子,不是的不需證明).

)關于的代數(shù)式是線段的封閉代數(shù)式,則有理數(shù)的最大值是__________,最小值是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊△ABC中,M為BC邊上的中點,D是射線AM上的一個動點,以CD為一邊且在CD的下方作等邊△CDE,連接BE.

(1)填空:若D與M重合時(如圖1)∠CBE=度;
(2)如圖2,當點D在線段AM上時(點D不與A、M重合),請判斷(1)中結論是否成立?并說明理由;
(3)在(1)的條件下,若AB=6,試求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】居民區(qū)內的廣場舞引起媒體關注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對廣場舞的看法,進行了一次抽樣調查,把居民對廣場舞的看法分為四個層次:A 非常贊同;B 贊同但要有時間限制;C 無所謂;D 不贊同.并將調查結果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中提供的信息解答下列問題:

1)求本次被抽查的居民有多少人?

2)將圖1和圖2補充完整;

3)求圖2“C”層次所在扇形的圓心角的度數(shù);

4)估計該小區(qū)4000名居民中對廣場舞的看法表示贊同(包括A層次和B層次)的大約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形的對角線長為20,兩鄰邊之比為3 : 4,則矩形的面積為( )

A. 20 B. 56 C. 192 D. 以上答案都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在□ABCD中,對角線AC與BD相交于點O,過點O作一條直線分別交AB,CD于點E,F(xiàn).

(1)求證:OE=OF;

(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】油電混合動力汽車是一種節(jié)油、環(huán)保的新技術汽車,某品牌油電混合動力汽車與普通汽車的相關成本數(shù)據(jù)估算如下表:

李老師計劃購入一輛該品牌的油電混合動力汽車,在只考慮車價和燃油成本的情況下,李老師預估了未來10年的用車成本,發(fā)現(xiàn)10年中平均每年行駛總里程達到一定公里數(shù)時,選擇油電混合動力汽車的成本不高于普通汽車.李老師預估的10年中平均每年行駛的總里程數(shù)至少為多少公里?

查看答案和解析>>

同步練習冊答案