【題目】圖,在△ABC中,D、E分別是ABAC的中點,BE=2DE,延長DEF,使得EF=BE,連接CF

1)求證:四邊形BCFE是菱形.

2)若DE=4cm,∠EBC=60°,求菱形BCFE的面積。

 

【答案】(1)證明見解析;
(2)菱形的面積為4×2=8.

【解析】

1)從所給的條件可知,DEABC中位線,所以DEBC2DE=BC,所以BCEF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以是菱形;(2)因為∠EBC60°,所以菱形的邊長也為4,求出菱形的高面積就可求.

(1)證明:∵D、E分別是AB、AC的中點,
DEBC2DE=BC,
又∵BE=2DE,EF=BE,
EF=BC,EFBC,
∴四邊形BCFE是平行四邊形,
又∵BE=FE,
∴四邊形BCFE是菱形;
(2)∵∠EBC=60°,
∴△EBC是等邊三角形,
∴菱形的邊長為4,高為2,
∴菱形的面積為4×2=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解陽光體育活動的開展情況,從全校2000名學(xué)生中,隨機抽取部分學(xué)生進行問卷調(diào)查(每名學(xué)生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

1)被調(diào)查的學(xué)生共有   人,并補全條形統(tǒng)計圖;

2)在扇形統(tǒng)計圖中,m   ,n   ,表示區(qū)域C的圓心角為   度;

3)全校學(xué)生中喜歡籃球的人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在線段上,

(1) 如圖1,兩點同時從,出發(fā),分別以的速度沿直線向左運動;

①在還未到達點時,的值為 ;

②當(dāng)右側(cè)時(不重合),取中點,的中點是,求的值;

(2) 是直線上一點,且.則的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,兩點分別是軸和軸正半軸上兩個動點,以三點為頂點的矩形的面積為24,反比例函數(shù)為常數(shù)且)的圖象與矩形的兩邊分別交于點.

1)若且點的橫坐標(biāo)為3.

①點的坐標(biāo)為 ,點的坐標(biāo)為 (不需寫過程,直接寫出結(jié)果);

②在軸上是否存在點,使的周長最。咳舸嬖,請求出的周長最小值;若不存在,請說明理由.

2)連接,在點的運動過程中,的面積會發(fā)生變化嗎?若變化,請說明理由,若不變,請用含的代數(shù)式表示出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組為了解我校初三年級1800名學(xué)生的身體健康情況,從初三隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg53kg的學(xué)生大約有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鐵路建設(shè)助推經(jīng)濟發(fā)展,近年來我國政府十分重視鐵路建設(shè).渝利鐵路通車后,從重慶到上海比原鐵路全程縮短了320千米,列車設(shè)計運行時速比原鐵路設(shè)計運行時速提高了120千米/小時,全程設(shè)計運行時間只需8小時,比原鐵路設(shè)計運行時間少用16小時.

(1)渝利鐵路通車后,重慶到上海的列車設(shè)計運行里程是多少千米?

(2)專家建議:從安全的角度考慮,實際運行時速減少m%,以便于有充分時間應(yīng)對突發(fā)事件,這樣,從重慶到上海的實際運行時間將增加m%小時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種對正整數(shù)nF運算:①當(dāng)n為奇數(shù)時,Fn)=3n+1;②當(dāng)n為偶數(shù)時,Fn)=(其中k是使Fn)為奇數(shù)的正整數(shù))……,兩種運算交替重復(fù)進行,例如,取n24,則:若n13,則第2018F運算的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,九年級(1)班數(shù)學(xué)興趣小組的同學(xué)們要測量某公園人工湖亭子A與它正東方向的亭子B之間的距離,現(xiàn)測得亭子A位于點P北偏西30°方向,亭子B位于點P北偏東42°方向,測得點P與亭子A之間的距離為200米,求亭子A與亭子B之間的距離.(結(jié)果精確到1米)

【參考數(shù)據(jù):sin42°=0.67,cos42°=0.74,tan42°=0.90, =1.73】

查看答案和解析>>

同步練習(xí)冊答案