7、如圖,已知四邊形ABCD,從下列任取3個條件組合,使四邊形ABCD為矩形,把可能情況寫出來(只填寫序號即可,要求至少要寫二個)
(1)AB∥CD  (2)AC=BD    (3)  AB=CD
(4)OA=OC   (5)∠ABC=90°(6)OB=OD
(1)(2)(3)或(1)(3)(5)或(2)(4)(6)或(4)(5)(6)中任兩個;
分析:只要掌握了矩形的判定定理,此題可解,例如在平行四邊形的基礎(chǔ)上,對角線互相平分且相等,一個角等于90°等等.
解答:解:(1)(4)(6)(對角線互相平分且相等的平行四邊形是矩形,)(1)(3)(5)一個角為90°的平行四邊形為矩形.
點評:熟練掌握矩形的性質(zhì)及判定定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點,AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖南常德市初中畢業(yè)學業(yè)考試數(shù)學試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習冊答案