【題目】一個質地均勻的小正方體,六個面上分別標有數(shù)字1,1,2,4,5,6,擲一次小正方體,觀察朝上一面的數(shù)字.
(1)朝上的數(shù)字是“3”的事件是什么事件?它的概率是多少?
(2)朝上的數(shù)字是“1”的事件是什么事件?它的概率是多少?
(3)朝上的數(shù)字是偶數(shù)的事件是什么事件?它的概率是多少?
【答案】(1)不可能事件,0(2)隨機事件,(3)隨機事件,
【解析】
(1)由于數(shù)字中沒有數(shù)字“3”,因此朝上的數(shù)字是“3”的事件是不可能事件,由此即可求得概率;
(2)朝上一面的數(shù)字一共有6種等可能的情況,其中出現(xiàn)數(shù)字“1”是隨機事件,然后根據(jù)概率公式進行計算即可;
(3)朝上一面的數(shù)字可能是奇數(shù)也可能是偶數(shù),可知事件為隨機事件,然后根據(jù)概率公式進行計算即可.
拋擲這個小正方體,朝上一面的數(shù)字有“1”、“1”、“2”、“4”、“5”、“6”共6種等可能的情況,
(1)數(shù)字中沒有3,因此朝上的數(shù)字是“3”的事件是不可能事件,
它的概率為0;
(2)朝上的數(shù)字為“1”占有兩種情況,所以朝上的數(shù)字是“1”的事件是隨機事件,
它的概率為;
(3)朝上的數(shù)字為偶數(shù)有三種情況,所以朝上的數(shù)字是偶數(shù)的事件是隨機事件,
它的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】.在一次課題設計活動中,小明對修建一座87m長的水庫大壩提出了以下方案;大壩的橫截面為等腰梯形,如圖,∥,壩高10m,迎水坡面的坡度,老師看后,從力學的角度對此方案提出了建議,小明決定在原方案的基礎上,將迎水坡面的坡度進行修改,修改后的迎水坡面的坡度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經(jīng)調查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:
(1)未降價之前,某商場襯衫的總盈利為 元.
(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關系如圖所示:
(1)求y與x之間的函數(shù)關系式;
(2)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
(銷售利潤=銷售價-成本價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(,、、為常數(shù))的圖象如圖所示,下列個結論:①;②;③;④;⑤為常數(shù),且.其中正確的結論有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】x2+(p+q)x+pq型式子是數(shù)學學習中常見的一類多項式,如何將這種類型的式子因式分解呢?因為(x+p)(x+q)= x2+(p+q)x+pq,所以,根據(jù)因式分解是與整式乘法方向相反的變形,利用這種關系可得:x2+(p+q)x+pq=(x+p)(x+q).如:x2+3x+2=x2+(1+2)x+1×2=(x+1)(x+2),上述過程還可以形象的用十字相乘的形式表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項的系數(shù),如下圖.這樣,我們可以得到:x2+3x+2= (x+1)(x+2),利用這種方法,將下列多項式分解因式:
(1)x2+7x+10
(2)-2x2-6x+36
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩塊等腰直角三角板△ABC和△DEC如圖擺放,其中∠ACB=∠DCE=90°,F是DE的中點,H是AE的中點,G是BD的中點.
(1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FH和FG的數(shù)量關系為______和位置關系為______;
(2)如圖2,若將三角板△DEC繞著點C順時針旋轉至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;
(3)如圖3,將圖1中的△DEC繞點C順時針旋轉一個銳角,得到圖3,(1)中的猜想還成立嗎?寫出結論,證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點,將△ADE繞點E順時針旋轉180°,點D的對應點為C,點A的對應點為F,過點E作ME⊥AF交BC于點M,連接AM、BD交于點N,現(xiàn)有下列結論:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點N為△ABM的外心.其中正確的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com