如圖22,將—矩形OABC放在直角坐際系中,O為坐標原點.點A在x軸正半軸上.點E是邊AB上的—個動點(不與點A、N重合),過點E的反比例函數的圖象與邊BC交于點F。
1.若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:
2.若OA=2.0C=4.問當點E運動到什么位置時,四邊形OAEF的面積最大.其最大值為多少?
1.∵點E、F在函數的圖象上,
∴設E(,),F(,),>0,>0,
∴S1=,S2=。∵S1+S2=2,∴ !。…………4分
2.∵四邊形OABC為矩形,OA=2,OC=4,∴設 E(,2), F(4,)!郆E=4-,BF=2-。
∴S△BEF=,S△OCF=,S矩形OABC=2×4=8,
∴S四邊形OAEF=S矩形OABC-S△BEF-S△OCF= 8-()-=。
∴當=4時,S四邊形OAEF=5!郃E=2。
∴當點E運動到AB的中點時,四邊形OAEF的面積最大,最大值是5!10分
解析:(1)設E(x1,),F(x2,),x1>0,x2>0,根據三角形的面積公式得到S1=S2= k,利用S1+S2=2即可求出k;
(2)設E(,2),F(4,),利用S四邊形OAEF=S矩形OABC-S△BEF-S△OCF=- (k-4)2+5,根據二次函數的最值問題即可得到當k=4時,四邊形OAEF的面積有最大值,S四邊形OAEF=5,此時AE=2.
科目:初中數學 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012屆山東省寧津縣實驗中學九年級中考模擬數學試卷(帶解析) 題型:解答題
如圖22,將—矩形OABC放在直角坐際系中,O為坐標原點.點A在x軸正半軸上.點E是邊AB上的—個動點(不與點A、N重合),過點E的反比例函數的圖象與邊BC交于點F。
【小題1】若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:
【小題2】若OA=2.0C=4.問當點E運動到什么位置時,四邊形OAEF的面積最大.其最大值為多少?
查看答案和解析>>
科目:初中數學 來源:2011-2012學年山東省九年級中考模擬數學試卷(解析版) 題型:解答題
如圖22,將—矩形OABC放在直角坐際系中,O為坐標原點.點A在x軸正半軸上.點E是邊AB上的—個動點(不與點A、N重合),過點E的反比例函數的圖象與邊BC交于點F。
1.若△OAE、△OCF的而積分別為S1、S2.且S1+S2=2,求的值:
2.若OA=2.0C=4.問當點E運動到什么位置時,四邊形OAEF的面積最大.其最大值為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com