如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.

(1)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);

(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為          頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式;

(3)在x軸、y軸上是否分別存在點(diǎn)M、N,使得四邊形MNFE的周 長(zhǎng)最?如果存在,求出周長(zhǎng)的最小值;如果不存在,請(qǐng)說(shuō)明理由.

          

 

【答案】

解:(1);

(2)在中,,

設(shè)點(diǎn)的坐標(biāo)為,其中,

∵頂點(diǎn)

∴設(shè)拋物線解析式為

①當(dāng)時(shí),

解得(舍去);

解得

拋物線的解析式為

②當(dāng)時(shí),,

解得(舍去).

③當(dāng)時(shí),,這種情況不存在.

綜上所述,符合條件的拋物線解析式是

(3)存在點(diǎn),使得四邊形的周長(zhǎng)最。

作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),連接,分別與軸、軸交于點(diǎn),則點(diǎn)就是所求點(diǎn).

,

 ,此時(shí)四邊形的周長(zhǎng)最小值是

【解析】(1)由軸對(duì)稱的性質(zhì),可知∠FBD=∠ABD,F(xiàn)B=AB,可得四邊形ABFD是正方形,則可求點(diǎn)E、F的坐標(biāo);

(2)已知拋物線的頂點(diǎn),則可用頂點(diǎn)式設(shè)拋物線的解析式.因?yàn)橐渣c(diǎn)E、F、P為頂點(diǎn)的等腰三角形沒(méi)有給明頂角的頂點(diǎn),而頂角和底邊都是惟一的,所以要抓住誰(shuí)是頂角的頂點(diǎn)進(jìn)行分類,可分別以E、F、P為頂角頂點(diǎn)進(jìn)行分類計(jì)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4cm,OC=3cm,D為OA上一動(dòng)點(diǎn),點(diǎn)D以1cm/s的速度從O點(diǎn)出發(fā)向精英家教網(wǎng)A點(diǎn)運(yùn)動(dòng),E為AB上一動(dòng)點(diǎn),點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā)向點(diǎn)B運(yùn)動(dòng).
(1)試寫(xiě)出多邊形ODEBC的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(s)之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,當(dāng)多邊形ODEBC的面積最小時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使得△PDE為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在某一時(shí)刻將△BED沿著B(niǎo)D翻折,使得點(diǎn)E恰好落在BC邊的點(diǎn)F處.求出此時(shí)時(shí)間t的值.若此時(shí)在x軸上存在一點(diǎn)M,在y軸上存在一點(diǎn)N,使得四邊形MNFE的周長(zhǎng)最小,試求出此時(shí)點(diǎn)M,點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系、已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處,若在y軸上存在點(diǎn)P,且滿足FE=FP,則P點(diǎn)坐標(biāo)為
(0,4),(0,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OC所在的直線為x軸,OA所在的直線為y軸,建立平面精英家教網(wǎng)直角坐標(biāo)系.已知OA=6,OC=4,在OA上取一點(diǎn)D,將△BDA沿BD翻折,點(diǎn)A恰好落在BC邊上的點(diǎn)E處.
(1)試判斷四邊形ABED的形狀,并說(shuō)明理由;
(2)若點(diǎn)F是AB的中點(diǎn),設(shè)頂點(diǎn)為E的拋物線的右側(cè)部分交x軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)精英家教網(wǎng)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(1)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);
(2)設(shè)頂點(diǎn)為F的拋物線交y軸正半軸于點(diǎn)P,且以點(diǎn)E、F、P為頂點(diǎn)的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以矩形OABC的頂點(diǎn)O為原點(diǎn),OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點(diǎn)E是AB的中點(diǎn),在OA上取一點(diǎn)D,將△BDA沿BD翻折,使點(diǎn)A落在BC邊上的點(diǎn)F處.
(Ⅰ)直接寫(xiě)出點(diǎn)E、F的坐標(biāo);
(Ⅱ)若M為x軸上的動(dòng)點(diǎn),N為y軸上的動(dòng)點(diǎn),當(dāng)四邊形MNFE的周長(zhǎng)最小時(shí),求出點(diǎn)M、N的坐標(biāo),并求出周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案