【題目】如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE,BG.

(1)求證:AE=BG
(2)將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)α(0°<α≤360°)如圖2所示,判斷(1)中的結(jié)論是否仍然成立?如果仍成立,請給予證明;如果不成立,請說明理由;
(3)若BC=DE=4,當(dāng)旋轉(zhuǎn)角α為多少度時(shí),AE取得最大值?直接寫出AE取得最大值時(shí)α的度數(shù),并利用備用圖畫出這時(shí)的正方形DEFG,最后求出這時(shí)AF的值.

【答案】
(1)

證明:∵△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn),

∴AD⊥BC,BD=CD,

∴∠ADB=∠ADC=90°,AD=DC=DB,

∵四邊形DEFG是正方形,

∴DE=DG,

∴△ADE≌△BDG(SAS),

∴BG=AE;


(2)

解:成立;

理由如下:如圖2,連接AD,

由(1)知AD=BD,AD⊥BC.

∴∠ADG+∠GDB=90°.

∵四邊形EFGD為正方形,

∴DE=DG,且∠GDE=90°.

∴∠ADG+∠ADE=90°

∴∠BDG=∠ADE.

在△BDG和△ADE中,

∵BD=AD,∠BDG=∠ADE,GD=ED,

∴△BDG≌△ADE(SAS)

∴AE=BG;


(3)

解:α=270°;

正方形DEFG如圖3所示

由(2)知BG=AE

∴當(dāng)BG取得最大值時(shí),AE取得最大值.

∵BC=DE=4,

∴EF=4,

∴BG=2+4=6

∴AE=6

在Rt△AEF中,由勾股定理,得

AF= = =2


【解析】(1)在Rt△BDG與Rt△EDA;根據(jù)邊角邊定理易得Rt△BDG≌Rt△EDA;故BG=AE;(2)連接AD,根據(jù)直角三角形與正方形的性質(zhì)可得Rt△BDG≌Rt△EDA;進(jìn)而可得BG=AE;(3)根據(jù)(2)的結(jié)論,求BG的最大值,分析可得此時(shí)F的位置,由勾股定理可得答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用等腰直角三角形和勾股定理的概念的相關(guān)知識(shí)可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是(
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,E為邊CD上一點(diǎn),將△ADE沿AE折疊至△AD′E處,AD′與CE交于點(diǎn)F.若∠B=52°,∠DAE=20°,則∠FED′的大小為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,屬于真命題的共有( ) ①相等的圓心角所對的弧相等 ②若 = ,則a、b都是非負(fù)實(shí)數(shù)
③相似的兩個(gè)圖形一定是位似圖形 ④三角形的內(nèi)心到這個(gè)三角形三邊的距離相等.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x<0)的圖象交于A(﹣1,3),B(﹣3,n)兩點(diǎn),直線y=﹣1與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù) 的圖象相交于點(diǎn)B(m,1).
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△PAB為直角三角形,請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD邊長為4,點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B,速度為1,點(diǎn)Q沿B﹣C﹣D運(yùn)動(dòng),速度為2,點(diǎn)P、Q同時(shí)出發(fā),則△BPQ的面積y與運(yùn)動(dòng)時(shí)間t(t≤4)的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是雙曲線 在第一象限分支上的一個(gè)動(dòng)點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊三角形ABC,點(diǎn)C在第四象限內(nèi),且隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也在不斷變化,但點(diǎn)C始終在雙曲線 上運(yùn)動(dòng),則k的值是

查看答案和解析>>

同步練習(xí)冊答案