【題目】如圖,在正方形ABCD中,E,F分別BC,CD邊上的一點,且BE=2EC,FC=DC,連接AE,AF,EF,求證:△AEF是直角三角形.
【答案】見解析.
【解析】
設FC=2a,由正方形的性質得出AB=BC=AD=CD=9a,,然后利用勾股定理分別表示出,然后根據(jù)勾股定理的逆定理即可證明結論.
證明:設FC=2a,則DC=9a,DF=7a.
∵四邊形ABCD是正方形,
∴AB=BC=AD=CD=9a, .
∵BE=2CE,
∴BE=6a,EC=3a.
在Rt△ECF中,EF2=EC2+FC2=(3a)2+(2a)2=13a2.
在Rt△ADF中,AF2=AD2+DF2=(9a)2+(7a)2=130a2.
在Rt△ABE中,AE2=AB2+BE2=(9a)2+(6a)2=117a2.
∵13a2+117a2=130a2,
∴EF2+AE2=AF2.
∴△AEF是以∠AEF為直角的直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】小明的爸爸騎著摩托車帶著小明在公路上勻速行駛,小明每隔一段時間看到的里程碑上的數(shù)如下:12:00時是一個兩位數(shù),數(shù)字之和為7;13:00時十位與個位數(shù)字與12:00是所看到的正好互換了;14:00時比12:00時看到的兩位數(shù)中間多出一個0.如果設小明在12:00看到的數(shù)的十位數(shù)字是x,個位數(shù)字是y,根據(jù)題意可列方程組為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在半徑為6cm的⊙O中,點A是劣弧 的中點,點D是優(yōu)弧 上一點,且∠D=30下列四個結論:①OA⊥BC;②BC= cm;③cos∠AOB= ;④四邊形ABOC是菱形.其中正確結論的序號是( )
A.①③
B.①②③④
C.①②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,過點A作AD⊥BC,垂足為D,E為AB上一點,過點E作EF⊥BC,垂足為F,過點D作DG∥AB交AC于點G.
(1)依題意補全圖形;
(2)請你判斷∠BEF與∠ADG的數(shù)量關系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請把下面證明過程補充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平行∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:因為BE、DF分別平分∠ABC、∠ADC,( ).
所以∠1=∠ABC,∠3=∠ADC( ).
因為∠ABC=∠ADC(已知),
所以∠1=∠3( ),
因為∠1=∠2(已知),
所以∠2=∠3( ).
所以 ∥ ( ).
所以∠A+∠ =180°,∠C+∠ =180°( ).
所以∠A=∠C( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當點D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由
(3)若D為AB的中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在橫線上完成下面的證明,并在括號內注明理由.
已知:如圖,∠ABC+∠BGD=180°,∠1=∠2.
求證:EF∥DB.
證明:∵∠ABC+∠BGD=180°,(已知)
∴ .( )
∴∠1=∠3.( )
又∵∠1=∠2,(已知)
∴ .( )
∴EF∥DB.( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為適應日益激烈的市場競爭要求,某工廠從2016年1月且開始限產,并對生產線進行為期5個月的升降改造,改造期間的月利潤與時間成反比例;到5月底開始恢復全面生產后,工廠每月的利潤都比前一個月增加10萬元.設2016年1月為第1個月,第x個月的利潤為y萬元,其圖象如圖所示,試解決下列問題:
(1)分別求該工廠對生產線進行升級改造前后,y與x之間的函數(shù)關系式;
(2)到第幾個月時,該工廠月利潤才能再次達到100萬元?
(3)當月利潤少于50萬元時,為該工廠的資金緊張期,問該工廠資金緊張期共有幾個月?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是高,AE是角平分線.
(1)若∠B=30°,∠C=70°,則∠CAE=______°,∠DAE=______°.
(2>若∠B=40°,∠C=80°.則∠DAE=______°.
(3)通過探究,小明發(fā)現(xiàn)將(2)中的條件“∠B=40°,∠C=80°”改為“∠C-∠B=40°”,也求出了∠DAE的度數(shù),請你寫出小明的求解過程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com