【題目】如圖,菱形的邊的垂直平分線交于點(diǎn),交于點(diǎn),連接.當(dāng)時,則

A.B.C.D.

【答案】B

【解析】

連接BF,根據(jù)菱形的對角線平分一組對角線可得∠BAC=50°,根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得AF=BF,根據(jù)等邊對等角可得∠FBA=FAB,再根據(jù)菱形的鄰角互補(bǔ)求出∠ABC,然后求出∠CBF,最后根據(jù)菱形的對稱性可得∠CDF=CBF

解:如圖,連接BF,
在菱形ABCD中,∠BAC=BAD=×100°=50°,
EFAB的垂直平分線,
AF=BF
∴∠FBA=FAB=50°,
∵菱形ABCD的對邊ADBC
∴∠ABC=180°-BAD=180°-100°=80°,
∴∠CBF=ABC-ABF=80°-50°=30°,
由菱形的對稱性,∠CDF=CBF=30°.
故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy內(nèi)有三點(diǎn):(0,﹣2),(1,﹣1),(2.17,0.37).則過這三個點(diǎn)_____(填不能)畫一個圓,理由是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖14,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2S3,S10,則S1+S2+S3+…+S10=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.

類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3,ADBE,CF兩兩相交于D,E,F三點(diǎn)(D,E,F三點(diǎn)不重合).

1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進(jìn)行證明;

2)△DEF是否為正三角形?請說明理由;

3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BDa,ADb,ABc,請?zhí)剿?/span>a,b,c滿足的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點(diǎn)A(﹣1,0),B4,0)與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)Px軸上的一個動點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)Px軸的垂線1,交拋物線與點(diǎn)Q

1)求拋物線的解析式;

2)當(dāng)點(diǎn)P在線段OB上運(yùn)動時,直線1BD于點(diǎn)M,試探究m為何值時,四邊形CQMD是平行四邊形;

3)在點(diǎn)P運(yùn)動的過程中,坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使BDQ是以BD為直角邊的直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yx26x+m滿足以下條件:當(dāng)﹣2x<﹣1時,它的圖象位于x軸的下方;當(dāng)8x9時,它的圖象位于x軸的上方,則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊AB8,∠B60°,PAB上一點(diǎn),BP3,QCD邊上一動點(diǎn),將梯形APQD沿直線PQ折疊,A的對應(yīng)點(diǎn)為A′,當(dāng)CA′的長度最小時,CQ的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準(zhǔn)備把自家屋頂改建成光伏瓦面,改建前屋頂截面ABC如圖2所示,BC=10米,∠ABC=ACB=36°,改建后頂點(diǎn)DBA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)

(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿OAB中,∠OAB=90°.OA=AB=6.將⊿OAB繞點(diǎn)O逆時針方向旋轉(zhuǎn)90°得到⊿OA1B1

1)線段A1B1的長是 AOA1的度數(shù)是

2)連結(jié)AA1,求證:四邊形OAA1B1是平行四邊形 ;

3)求四邊形OAA1B1的面積 .

查看答案和解析>>

同步練習(xí)冊答案