【題目】如圖(1), ,.點(diǎn)P在線(xiàn)段AB上以的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為.
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)時(shí), 與是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線(xiàn)段PC和線(xiàn)段PQ的位置關(guān)系;
(2)如圖(2),將圖(1)中的“,”為改“”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為,是否存在實(shí)數(shù)x,使得與全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)答案見(jiàn)解析 (2)或
【解析】
(1)利用SAS證得△ACP≌△BPQ,得出∠ACP=∠BPQ,進(jìn)一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出結(jié)論即可;
(2)由△ACP≌△BPQ,分兩種情況:①AC=BP,AP=BQ,②A(yíng)C=BQ,AP=BP,建立方程組求得答案即可.
解:(1)當(dāng)時(shí),
又
在和中,
,
即線(xiàn)段與線(xiàn)段垂直.
(2)①若
則
解得
②若
則
解得
綜上所述,存在或使得與全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=60°,AB=12cm,將△ABC以點(diǎn)B為中心順時(shí)針旋轉(zhuǎn),使點(diǎn)C旋轉(zhuǎn)到AB邊延長(zhǎng)線(xiàn)上的點(diǎn)D處,則AC邊掃過(guò)的圖形(陰影部分)的面積是cm2 . (結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB⊥BC,AE平分∠BAD交BC于點(diǎn)E,AE⊥DE,∠1+∠2=90°,M、N分別是BA、CD延長(zhǎng)線(xiàn)上的點(diǎn),∠EAM和∠EDN的平分線(xiàn)交于點(diǎn)F,∠F的度數(shù)為( 。
A.120°B.135°C.150°D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c.
(1)若a∶b=3∶4,c=75cm,求a、b;
(2)若a∶c=15∶17,b=24,求△ABC的面積;
(3)若c-a=4,b=16,求a、c;
(4)若∠A=30°,c=24,求c邊上的高hc;
(5)若a、b、c為連續(xù)整數(shù),求a+b+c.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE把∠BOD分成兩部分;
(1)直接寫(xiě)出圖中∠AOC的對(duì)頂角為 ,∠BOE的鄰補(bǔ)角為 ;
(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥DC,AD∥BC,BE=DF,則圖中全等的三角形有( )
A. 3對(duì) B. 4對(duì) C. 5對(duì) D. 6對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有足夠多的正方形和長(zhǎng)方形的卡片,如圖1所示,請(qǐng)運(yùn)用拼圖的方法,選取相應(yīng)種類(lèi)和數(shù)量的卡片,按要求回答下列問(wèn)題.
(1)根據(jù)圖2,利用面積的不同表示方法,寫(xiě)出一個(gè)代數(shù)恒等式:______________________;
(2)若要拼成一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,則需要甲卡片____張,乙卡片____張,丙卡片____張;
(3)請(qǐng)用畫(huà)圖結(jié)合文字說(shuō)明的方式來(lái)解釋?zhuān)?/span>≠ (≠0,≠0).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com