已知:關(guān)于x的二次函數(shù)(a>0),點A(n,y1)、B(n+1,y2)、C(n+2,y3)都在這個二次函數(shù)的圖象上,其中n為正整數(shù).
(1)y1=y2,請說明a必為奇數(shù);
(2)設(shè)a=11,求使y1≤y2≤y3成立的所有n的值;
(3)對于給定的正實數(shù)a,是否存在n,使△ABC是以AC為底邊的等腰三角形?如果存在,求n的值(用含a的代數(shù)式表示);如果不存在,請說明理由.
解:(1)∵點A(n,y1)、B(n+1,y2)都在二次函數(shù)(a>0)的圖象上,
。
∵y1=y2,
,整理得:a=2n+1。
∵n為正整數(shù),∴a必為奇數(shù)。
(2)當a=11時,∵y1<y2<y3
。
化簡得:。解得:。
∵n為正整數(shù),∴n=1、2、3、4。
(3)存在。
假設(shè)存在,則AB=AC,
如圖所示,過點B作BN⊥x軸于點N,過點A作AD⊥BN于點D,CE⊥BN于點E,

∵xA=n,xB=n+1,xC=n+2,∴AD=CE=1。
在Rt△ABD與Rt△CBE中,AB=BC,AD=CE,
∴Rt△ABD≌Rt△CBE(HL)。
∴∠BAD=∠CBE,即BN為頂角的平分線。
由等腰三角形性質(zhì)可知,點A、C關(guān)于BN對稱。
∴BN為拋物線的對稱軸,點B為拋物線的頂點,
!。
∴存在n,使△ABC是以AC為底邊的等腰三角形,。
(1)將點A和點B的坐標代入二次函數(shù)的解析式,利用y1=y2得到用n表示a的式子,即可得到答案;
(2)將a=11代入解析式后,由題意列出不等式組,求得此不等式組的正整數(shù)解。
(3)本問為存在型問題,如圖所示,可以由三角形全等及等腰三角形的性質(zhì),判定點B為拋物線的頂點,點A、C關(guān)于對稱軸對稱,于是得到,從而可以求出。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,一條拋物線(m<0)與x軸相交于A、B兩點(點A在點B的左側(cè)).若點M、N的坐標分別為(0,—2)、(4,0),拋物線與直線MN始終有交點,線段AB的長度的最小值為            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.
(1)求a1,b1的值及拋物線y2的解析式;
(2)拋物線y3的頂點坐標為(       ,       );
依此類推第n條拋物線yn的頂點坐標為(              );
所有拋物線的頂點坐標滿足的函數(shù)關(guān)系是       ;
(3)探究下列結(jié)論:
①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;
②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,一個二次函數(shù)的圖象經(jīng)過點A(1,0)、B(3,0)兩點.

(1)寫出這個二次函數(shù)的對稱軸;
(2)設(shè)這個二次函數(shù)的頂點為D,與y軸交于點C,它的對稱軸與x軸交于點E,連接AD、DE和DB,當△AOC與△DEB相似時,求這個二次函數(shù)的表達式。
[提示:如果一個二次函數(shù)的圖象與x軸的交點為A,那么它的表達式可表示為:]

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,平面之間坐標系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A     ,k=     
(2)隨著三角板的滑動,當a=時:
①請你驗證:拋物線的頂點在函數(shù)的圖象上;
②當三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當x≥t+4時,|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)(m>0)的圖象與x軸交于A、B兩點.

(1)寫出A、B兩點的坐標(坐標用m表示);
(2)若二次函數(shù)圖象的頂點P在以AB為直徑的圓上,求二次函數(shù)的解析式;
(3)設(shè)以AB為直徑的⊙M與y軸交于C、D兩點,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,二次函數(shù)的圖象與x軸相交于點A(﹣3,0)、B(﹣1,0),與y軸相交于點C(0,3),點P是該圖象上的動點;一次函數(shù)y=kx﹣4k(k≠0)的圖象過點P交x軸于點Q.

(1)求該二次函數(shù)的解析式;
(2)當點P的坐標為(﹣4,m)時,求證:∠OPC=∠AQC;
(3)點M,N分別在線段AQ、CQ上,點M以每秒3個單位長度的速度從點A向點Q運動,同時,點N以每秒1個單位長度的速度從點C向點Q運動,當點M,N中有一點到達Q點時,兩點同時停止運動,設(shè)運動時間為t秒.連接AN,當△AMN的面積最大時,
①求t的值;
②直線PQ能否垂直平分線段MN?若能,請求出此時點P的坐標;若不能,請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線與坐標軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).

(1)求點P運動的速度是多少?
(2)當t為多少秒時,矩形PEFQ為正方形?
(3)當t為多少秒時,矩形PEFQ的面積S最大?并求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有下列4個命題:
①方程的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD=,則CD=3.
③點P(x,y)的坐標x,y滿足x2+y2+2x﹣2y+2=0,若點P也在的圖象上,則k=﹣1.
④若實數(shù)b、c滿足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個不相等的實數(shù)根,且較大的實數(shù)根x0滿足﹣1<x0<1.
上述4個命題中,真命題的序號是   

查看答案和解析>>

同步練習冊答案