證明:(1)∵CD⊥AB,BE⊥AC,
∴∠BDH=∠BEC=∠CDA=90°,
∵∠ABC=45°,
∴∠BCD=180°-90°-45°=45°=∠ABC
∴DB=DC,
∵∠BDH=∠BEC=∠CDA=90°,
∴∠A+∠ACD=90°,∠A+∠HBD=90°,
∴∠HBD=∠ACD,
∵在△DBH和△DCA中,
,
∴△DBH≌△DCA(ASA),
∴BH=AC.
(2)連接CG,
由(1)知,DB=CD,
∵F為BC的中點,
∴DF垂直平分BC,
∴BG=CG,
∵∠ABE=∠CBE,BE⊥AC,
∴EC=EA,
在Rt△CGE中,由勾股定理得:CG
2-GE
2=CE
2,
∵CE=AE,BG=CG,
∴BG
2-GE
2=EA
2.
分析:(1)根據(jù)三角形的內(nèi)角和定理求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根據(jù)ASA證出△DBH≌△DCA即可;
(2)根據(jù)DB=DC和F為BC中點,得出DF垂直平分BC,推出BG=CG,根據(jù)BE⊥AC和∠ABE=∠CBE得出AE=CE,在Rt△CGE中,由勾股定理即可推出答案.
點評:本題考查了勾股定理,等腰三角形性質(zhì),全等三角形的性質(zhì)和判定,線段的垂直平分線的性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點到線段兩端的距離相等,等腰三角形具有三線合一的性質(zhì),主要考查學(xué)生運用定理進(jìn)行推理的能力.