【題目】已知拋物線y=x2﹣(2m+1)x+2m不經(jīng)過(guò)第三象限,且當(dāng)x>2時(shí),函數(shù)值y隨x的增大而增大,則實(shí)數(shù)m的取值范圍是( )
A.0≤m≤1.5
B.m≥1.5
C.0≤m≤1
D.0<m≤1.5

【答案】A
【解析】解:∵當(dāng)x>2時(shí),拋物線y=x2﹣(2m+1)x+2m滿足y隨x的增大而增大,

≤2,

解得,m≤1.5.

∵拋物線開(kāi)口向上,且不經(jīng)過(guò)第三象限,

∴2m≥0,

解得,m≥0,

∴0≤m≤1.5,

所以答案是:A.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí),掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸正半軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)B(0,3),點(diǎn)P是x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)C,交直線AB于點(diǎn)D,設(shè)P(x,0).

(1)求拋物線的函數(shù)表達(dá)式;
(2)當(dāng)0<x<3時(shí),求線段CD的最大值;
(3)在△PDB和△CDB中,當(dāng)其中一個(gè)三角形的面積是另一個(gè)三角形面積的2倍時(shí),求相應(yīng)x的值;
(4)過(guò)點(diǎn)B,C,P的外接圓恰好經(jīng)過(guò)點(diǎn)A時(shí),x的值為 . (直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,,于點(diǎn).下列結(jié)論正確的個(gè)數(shù)為()個(gè)

;②;③;④;⑤.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 中, , 是過(guò) 點(diǎn)的一條直線


1)作 于點(diǎn), 點(diǎn),若點(diǎn)和點(diǎn)在直線的同側(cè),求證:
2)若直線繞點(diǎn)旋轉(zhuǎn)到點(diǎn)和點(diǎn)在其兩側(cè),其余條件不變,問(wèn):的關(guān)系如何?請(qǐng)予以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC=60°.將一直角三角板MON的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

1)求∠CON的度數(shù);

2)如圖2是將圖1中的三角板繞點(diǎn)O按每秒15°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周的情況,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),三條射線OAOC、OM構(gòu)成兩個(gè)相等的角,求此時(shí)的t

3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3(使ON在∠AOC的外部),圖4(使ON在∠AOC的內(nèi)部)請(qǐng)分別探究∠AOM與∠NOC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般情況下,不成立,但有些數(shù)可以使得它成立,例如:a1,b2.我們稱使得成立的一對(duì)數(shù)ab相伴數(shù)對(duì),記為(a,b).

1)判斷數(shù)對(duì)(﹣2,1),(3,3)是否是相伴數(shù)對(duì);

2)若(k,﹣1)是相伴數(shù)對(duì),求k的值;

3)若(4,m)是相伴數(shù)對(duì),求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC的一角折疊,使點(diǎn)C落在△ABC內(nèi)一點(diǎn)

1)若∠1=40°,∠2=30°,求∠C的度數(shù);(2)試通過(guò)第(1)問(wèn),直接寫(xiě)出∠1、∠2、∠C三者之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊△ABC的邊長(zhǎng)是2,DE分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=BC,連接CDEF

1)求證:DE=CF;

2)求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書(shū)香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書(shū)柜放置新購(gòu)進(jìn)的圖書(shū),調(diào)查發(fā)現(xiàn),若購(gòu)買甲種書(shū)柜3個(gè)、乙種書(shū)柜2個(gè),共需資金1020元;若購(gòu)買甲種書(shū)柜4個(gè),乙種書(shū)柜3個(gè),共需資金1440元.

(1)甲、乙兩種書(shū)柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書(shū)柜共20個(gè),其中乙種書(shū)柜的數(shù)量不少于甲種書(shū)柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

同步練習(xí)冊(cè)答案