【題目】14分)如圖,已知拋物線)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.

(1)求此拋物線的解析式;

(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);

(3)點(diǎn)P在拋物線的對(duì)稱軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).

【答案】(1);(2)當(dāng)a=時(shí),S四邊形BOCE最大,且最大值為,此時(shí),點(diǎn)E坐標(biāo)為(,;(3)P(﹣1,1)(﹣1,﹣2).

【解析】

試題分析:(1)將A、B兩點(diǎn)的坐標(biāo)代入拋物線的解析式中,即可求出二次函數(shù)的解析式;

(2)過E作EFx軸于F.設(shè)E(a,)(﹣3<a<0),則EF=,BF=a+3,OF=﹣a,S四邊形BOCE==BFEF+(OC+EF)OF =,配方即可得出結(jié)論,當(dāng)a=時(shí),=,即可得到點(diǎn)E坐標(biāo);

(3)由P在拋物線的對(duì)稱軸上,設(shè)出P坐標(biāo)為(﹣2,m),如圖所示,過A′作A′N對(duì)稱軸于N,由旋轉(zhuǎn)的性質(zhì)可證明A′NP≌△PMA,得到A′N=PM=|m|,PN=AM=2,表示出A′坐標(biāo),將A′坐標(biāo)代入拋物線解析式中求出相應(yīng)m的值,即可確定出P的坐標(biāo).

試題解析:(1)拋物線)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),OB=3,OC=OB,OC=3,c=3,,解得:,所求拋物線解析式為:;

(2)如圖2,過點(diǎn)E作EFx軸于點(diǎn)F,設(shè)E(a,)(﹣3<a<0)EF=,BF=a+3,OF=﹣a,S四邊形BOCE==BFEF+(OC+EF)OF===,當(dāng)a=時(shí),S四邊形BOCE最大,且最大值為.此時(shí),點(diǎn)E坐標(biāo)為();

(3)拋物線的對(duì)稱軸為x=﹣1,點(diǎn)P在拋物線的對(duì)稱軸上,設(shè)P(﹣1,m),線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,如圖,PA=PA′,APA′=90°,如圖3,過A′作A′N對(duì)稱軸于N,設(shè)對(duì)稱軸于x軸交于點(diǎn)M,∴∠NPA′+MPA=NA′P+NPA′=90°,∴∠NA′P=NPA,在A′NP與APM中,∵∠ANP=AMP=90°NAP=MPA,PA=AP,∴△A′NP≌△PMA,A′N=PM=|m|,PN=AM=2,A′(m﹣1,m+2),代入得:,解得:m=1,m=﹣2,P(﹣1,1),(﹣1,﹣2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:甲、乙兩車分別從相距300千米的A、B兩地同時(shí)出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象.

1)請(qǐng)直接寫出甲、乙兩車離各自出發(fā)地的距離y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并標(biāo)明自變量x的取值范圍;

2)它們?cè)谛旭偟倪^程中有幾次相遇?并求出每次相遇的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑點(diǎn)P在弧AB(不含點(diǎn)A、B),把△AOP沿OP對(duì)折,點(diǎn)A的對(duì)應(yīng)點(diǎn)C恰好落在⊙O

(1)當(dāng)P、C都在AB上方時(shí)(如圖1),判斷POBC的位置關(guān)系(只回答結(jié)果);

(2)當(dāng)PAB上方而CAB下方時(shí)(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;

(3)當(dāng)PC都在AB上方時(shí)(如圖3),C點(diǎn)作CD⊥直線APD,CD是⊙O的切線,求證:AB4PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx-5(a≠0)經(jīng)過點(diǎn)A(4,-5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.

(1)求這條拋物線的表達(dá)式;

(2)連接AB、BC、CD、DA,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分6分)小明家的房前有一塊矩形的空地,空地上有三棵樹A、BC,小明

想建一個(gè)圓形花壇,使三棵樹都在花壇的邊上.

1)(本小題滿分4分)請(qǐng)你幫小明把花壇的位置畫出來(尺規(guī)作圖,不寫作法,保

留作圖痕跡).

2)(本小題滿分2分))若△ABCAB=8米,AC=6米,∠BAC=,試求小明家圓形花壇的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的三邊長(zhǎng)分別是3,12a,8.則數(shù)a的取值范圍是(  )

A. 5a<﹣2B. 5a2C. 5a11D. 0a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解參加運(yùn)動(dòng)會(huì)的2000名運(yùn)動(dòng)員的年齡情況,從中抽查了100名運(yùn)動(dòng)員的年齡.就這個(gè)問題來說,下面說法中正確的是( )
A.2000名運(yùn)動(dòng)員是總體
B.每個(gè)運(yùn)動(dòng)員是個(gè)體
C.100名運(yùn)動(dòng)員是抽取的一個(gè)樣本
D.抽取的100名運(yùn)動(dòng)員的年齡是樣本

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于軸對(duì)稱位置變換,說法正確的有( )

①對(duì)應(yīng)線段平行且相等;

②對(duì)應(yīng)點(diǎn)的連線被對(duì)稱軸垂直平分;

③對(duì)應(yīng)角相等;

④軸對(duì)稱得到的圖形與原圖形全等.

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2014年投入教育經(jīng)費(fèi)200萬元,2016年投入教育經(jīng)費(fèi)242萬元.

(1)求2014年至2016年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;

(2)根據(jù)(1)所得的年平均增長(zhǎng)率,預(yù)計(jì)2017年該地區(qū)將投入教育經(jīng)費(fèi)多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案