【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)某個(gè)角度后得到△A′B′C,當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在AB邊上時(shí),陰影部分的面積為___________.
【答案】π-
【解析】
連接CA′,證明三角形AA′C是等邊三角形即可得到旋轉(zhuǎn)角α的度數(shù),再利用旋轉(zhuǎn)的性質(zhì)求出扇形圓心角以及△CDB′的兩直角邊長(zhǎng),進(jìn)而得出圖形面積即可.
如圖,
∵AC=A′C,且∠A=60°,
∴△ACA′是等邊三角形.
∴∠ACA′=60°,
∴∠A′CB=90°-60°=30°,
∵∠CA′D=∠A=60°,
∴∠CDA′=90°,
∵∠B′CB=∠A′CB′-∠A′CB=90°-30°=60°,
∴∠CB′D=30°,
∴CD=CB′=CB=×2=1,
∴B′D=,
∴S△CDB′=×CD×DB′=×1×=,
S扇形B′CB=,
則陰影部分的面積為:π-,
故答案為:π-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=65°,以點(diǎn)A為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得△AB'C',連接BB',若BB'∥AC,則∠BAC′的大小是( )
A.15°B.25°C.35°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,點(diǎn)A(2,﹣1),B(3,2),C(1,0).解答問(wèn)題:請(qǐng)按要求對(duì)△ABC作如下變換.
(1)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1;
(2)以點(diǎn)O為位似中心,位似比為2:1,將△ABC在位似中心的異側(cè)進(jìn)行放大得到△A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)、點(diǎn)在軸上(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)在第一象限,滿(mǎn)足為直角,且恰使∽△,拋物線經(jīng)過(guò)、、三點(diǎn).
(1)求線段、的長(zhǎng);
(2)求點(diǎn)的坐標(biāo)及該拋物線的函數(shù)關(guān)系式;
(3)在軸上是否存在點(diǎn),使為等腰三角形?若存在,求出所有符合條件的點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了了解初中學(xué)校“高效課堂”的有效程度,并就初中生在課堂上是否具有“主動(dòng)質(zhì)疑”、“獨(dú)立思考”、“專(zhuān)注聽(tīng)講”、“講解題目”等學(xué)習(xí)行為進(jìn)行評(píng)價(jià).為此,該市教研部門(mén)開(kāi)展了一次抽樣調(diào)查, 并將調(diào)查結(jié)果繪制成尚不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖( 如圖所示),請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)這次抽樣調(diào)查的樣本容量為 .
(2)在扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”對(duì)應(yīng)的圓心角為 度;
(3)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖;
(4)若該市初中學(xué)生共有萬(wàn)人,在課堂上具有“獨(dú)立思考”行為的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB>AC,∠BAC的平分線交外接圓于D,DE⊥AB于E,DM⊥AC于M.
(1)求證:BE=CM.
(2)求證:AB﹣AC=2BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題情境)
張老師給愛(ài)好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問(wèn)題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過(guò)點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過(guò)點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.
小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小俊的證明思路是:如圖2,過(guò)點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
[變式探究]
如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;
請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:
[結(jié)論運(yùn)用]
如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過(guò)點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
[遷移拓展]
圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且ADCE=DEBC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC的頂角∠A=36°,若將其繞點(diǎn)C順時(shí)針旋轉(zhuǎn)36°,得到△,點(diǎn)B′在AB邊上,交AC于E,連接AA′.有下列結(jié)論:①△ABC≌△;②四邊形是平行四邊形;③圖中所有的三角形都是等腰三角形;其中正確的結(jié)論是( )
A.①②B.① ③C.②③D.① ② ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來(lái)越多的人關(guān)注和喜愛(ài),某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)寫(xiě)出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過(guò)16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com