如圖,直線AE∥BD,點C在BD上,若AE=5,BD=8,△ABD的面積為16,則△ACE的面積為   
【答案】分析:過點A作AF⊥BD于點F,由△ABD的面積為16可求出AF的長,再由AE∥BD可知AF為△ACE的高,由三角形的面積公式即可得出結(jié)論.
解答:解:過點A作AF⊥BD于點F,
∵△ABD的面積為16,BD=8,
BD•AF=×8×AF=16,
解得AF=4,
∵AE∥BD,
∴AF的長是△ACE的高,
∴S△ACE=×AE×4=×5×4=10.
故答案為:10.
點評:本題考查的是平行線間的距離及三角形的面積公式,熟知兩平行線間的距離相等是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線AE∥BD,點C在BD上,若AE=4,BD=8,△ABD的面積為16,則△ACE的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線AE∥BD,點C在BD上,若AE=5,BD=8,△ABD的面積為16,則△ACE的面積為
10
10

查看答案和解析>>

科目:初中數(shù)學 來源:常州 題型:填空題

如圖,直線AEBD,點C在BD上,若AE=4,BD=8,△ABD的面積為16,則△ACE的面積為______.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年江蘇省常州市中考數(shù)學試卷(解析版) 題型:填空題

(2003•常州)如圖,直線AE∥BD,點C在BD上,若AE=4,BD=8,△ABD的面積為16,則△ACE的面積為   

查看答案和解析>>

同步練習冊答案