【題目】已知如圖,A、E、F、C四點共線,BF=DE,AB=CD.
(1)請你添加一個條件,使△DEC≌△BFA;
(2)在(1)的基礎(chǔ)上,求證:DE∥BF.
【答案】(1)添加的條件為:AE=CF(答案不唯一);(2)證明見解析;
【解析】
(1)添加的條件AE=CF,因此可得AF=CE,即可證明△DEC≌△BFA;
(2) 由(1)知△DEC≌△BFA,得到∠DEC=∠BFA,根據(jù)直線平行的判定,即可證明;
解:(1)添加的條件為:AE=CF,
證明:∵AE=CF,
∴AE+EF=CF+EF,
即:AF=CE,
又∵BF=DE,AB=CD,
∴在△DEC和△BFA中,
∴△DEC≌△BFA(SSS);
(2)由(1)知△DEC≌△BFA,
∴∠DEC=∠BFA
(全等三角形對應(yīng)角相等),
∴DE∥BF(內(nèi)錯角相等,兩直線平行).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D在AB上,點E在BC上,BD=BE.
(1)請你再添加一個條件,使得△BEA≌△BDC,并給出證明.你添加的條件是 .
(2)根據(jù)你添加的條件,再寫出圖中的一對全等三角形 .(只要求寫出一對全等三角形,不再添加其他線段,不再標(biāo)注或使用其他字母,不必寫出證明過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:我們學(xué)過一次函數(shù)的圖象的平移,如:將一次函數(shù)的圖象沿x軸向右平移1個單位長度可得到函數(shù)的圖象,再沿y軸向上平移1個單位長度,得到函數(shù)的圖象;如果將一次函數(shù)的圖象沿x軸向左平移1個單位長度可得到函數(shù)的圖象,再沿y軸向下平移1個單位長度,得到函數(shù)的圖象;仿照上述平移的規(guī)律,解決下列問題:
將一次函數(shù)的圖象沿x軸向右平移3個單位長度,再沿y軸向上平移1個單位長度,得到函數(shù)的圖象;
將的函數(shù)圖象沿y軸向下平移3個單位長度,得到函數(shù)的圖象,再沿x軸向左平移1個單位長度,得到函數(shù)的圖象;
函數(shù)的圖象可由的圖象經(jīng)過怎樣的平移變換得到?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標(biāo);
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標(biāo)及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)a,b,定義運算“*”:a*b=a2-ab(a≤b); a*b=b2-ab(a>b),關(guān)于x的方程(2x-1)*(x-1)=m 恰好有三個不相等的實數(shù)根,則m的取值范圍是( )
A.m>
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)學(xué)生步行到郊外旅行,七年級班學(xué)生組成前隊,步行速度為4千米小時,七班的學(xué)生組成后隊,速度為6千米小時;前隊出發(fā)1小時后,后隊才出發(fā),同時后隊派一名聯(lián)絡(luò)員騎自行車在兩隊之間不間斷地來回聯(lián)絡(luò),他騎車的速度為10千米小時.
后隊追上前隊需要多長時間?
后隊追上前隊的時間內(nèi),聯(lián)絡(luò)員走的路程是多少?
七年級班出發(fā)多少小時后兩隊相距2千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形OABC置于平面直角坐標(biāo)系中,點A,C分別在x,y軸的正半軸上,已知點B(4,2),將矩形OABC翻折,使得點C的對應(yīng)點P恰好落在線段OA(包括端點O,A)上,折痕所在直線分別交BC、OA于點D、E;若點P在線段OA上運動時,過點P作OA的垂線交折痕所在直線于點 Q.設(shè)點Q的坐標(biāo)為(x,y),則y關(guān)于x的函數(shù)關(guān)系式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個條件是( 。
A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠DAB=∠ABC=90°,AB=BC,E是AB的中點,CE⊥BD.
(1)求證:BE=AD;
(2)求證:AC是線段ED的垂直平分線;
(3)△DBC是等腰三角形嗎?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com