【題目】已知:在平面直角坐標系xOy中,對稱軸為直線x = -2的拋物線經(jīng)過點C(0,2),與x軸交于A(-3,0)、B兩點(點A在點B的左側).
(1)求這條拋物線的表達式.
(2)連接BC,求∠BCO的余切值.
(3)如果過點C的直線,交x軸于點E,交拋物線于點P,且∠CEO =∠BCO,求點P的坐標.
【答案】(1);(2);(3)點P坐標是(,)或(,).
【解析】
(1)首先設拋物線的解析式,然后根據(jù)對稱軸和所經(jīng)過的點,列出方程,即可得出解析式;
(2)首先求出B坐標,即可得出,,進而得出∠BCO的余切值;
(3)首先根據(jù)的余切值列出等式,得出點E的坐標,然后根據(jù)點C的坐標得出直線解析式,最后聯(lián)立直線和拋物線的解析式即可得出點P坐標.
(1)設拋物線的表達式為.
由題意得:
解得:,.
∴這條拋物線的表達式為.
(2)令y = 0,那么,
解得,.
∵點A的坐標是(3,0)
∴點B的坐標是(1,0).
∵C(0,2)
∴,.
在Rt△ OBC中,∠BOC=90,
∴.
(3)設點E的坐標是(x,0),得OE=.
∵,
∴.
在Rt△EOC中,∴.
∴=4,∴點E坐標是(4,0)或 (4,0).
∵點C坐標是(0,2),
∴.
∴ ,或
解得和(舍去),或和(舍去);
∴點P坐標是(,)或(,).
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,A(t,0),B(t+2,0).對于線段AB和點P給出如下定義:當∠APB=90°時,稱點P為線段AB的“直角點”.
(Ⅰ)當t=﹣1時,點C(0,1),判斷點C是否為線段AB的“直角點”,并說明理由;
(Ⅱ)已知拋物線y=ax2+bx(a>0,b<0)的頂點為M,與x軸交于A(t,0),B(t+2,0),若點M為線段AB的“直角點”,求出此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店在服裝銷售中發(fā)現(xiàn):進貨價每件60元,銷售價每件100元的某服裝每天可售出20件,為了迎接新春佳節(jié),服裝店決定采取適當?shù)拇黉N措施,擴大銷售量,增加盈利.經(jīng)調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,那么每天就可多售出2件.
(1)如果服裝店想每天銷售這種服裝盈利1050元,同時又要使顧客得到更多的實惠,那么每件服裝應降價多少元?
(2)每件服裝降價多少元時,服裝店每天可獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在△ABC中,∠C=90°,點O在AC上,以AO為半徑的⊙O交AB于D, BD的垂直平分線交BD于F,交BC于E,連接DE.
(1)求證:DE是⊙O的切線;
(2)若∠B=30°,BC=,且AD∶DF=1∶2,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC=4,BC=6點D在底邊BC上,且∠DAC=∠ACD,將△ACD沿著AD所在直線翻折,使得點C落到點E處,聯(lián)結BE,那么BE的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰△ABC的直角邊AB=BC=10cm,點P、Q分別從A、C兩點同時出發(fā),均以1cm/秒的相同速度作直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t,△PCQ的面積為S.
(1)求出S關于t的函數(shù)關系式;
(2)當點P運動幾秒時,S△PCQ=S△ABC?
(3)作PE⊥AC于點E,當點P、Q運動時,線段DE的長度是否改變?證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點E,AF⊥BE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B(3,0),C(0,3)三點.
(1)求拋物線的解析式;
(2)點M是線段BC上的點(不與B、C重合),過M作NM∥y軸交拋物線于N,若點M的橫坐標為m,請用含m的代數(shù)式表示MN的長;
(3)在(2)的條件下,連接NB,NC,是否存在點m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com