如圖,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1,其中△ABC的各頂點(diǎn)均在格點(diǎn)上.
(1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后所得到的△ADE;(點(diǎn)D、E分別對(duì)應(yīng)點(diǎn)B、C)
(2)求四邊形EBDC的面積.
分析:(1)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出旋轉(zhuǎn)后所得到的△ADE即可;
(2)根據(jù)S四邊形EBDC=S□FGHK-S△BDF-S△BGE-S△EHC-S△DCK即可得出結(jié)論.
解答:解:(1)如圖所示;

(2)S四邊形EBDC=S□FGHK-S△BDF-S△BGE-S△EHC-S△DCK
=10×10-
1
2
×6×8-
1
2
×2×6-
1
2
×2×4-
1
2
×4×8
=100-24-6-4-16
=50.
點(diǎn)評(píng):本題考查的是作圖-旋轉(zhuǎn)變換,熟知圖形旋轉(zhuǎn)的性質(zhì)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱最短路線的長(zhǎng)度為兩個(gè)街區(qū)之間的“出租車距離”.設(shè)圖中每個(gè)小正方形方格的邊長(zhǎng)為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①?gòu)脑c(diǎn)O到(6,1)的“出租車距離”為
7
7
.最短路線有
7
7
條;
②與原點(diǎn)O的“出租車距離”等于30的路口共有
120
120
個(gè).
(2)①解釋應(yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請(qǐng)給出適當(dāng)?shù)恼f理或過程)
②解決問題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有
780
780
條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在18×13的網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1.△ABC與△A′B′精英家教網(wǎng)C′是關(guān)于點(diǎn)O為位似中心的位似圖形,他們的頂點(diǎn)都在小正形的頂點(diǎn)上.
(1)在圖中畫出位似圖形點(diǎn)O;(要保留畫圖痕跡)
(2)△ABC與△A′B′C′的位似比是
 

(3)請(qǐng)?jiān)诖司W(wǎng)格中,以點(diǎn)C為位似中心,再畫一個(gè)△A1B1C,使它與△ABC的位似比等于2:1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在18×13的網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1.△ABC與△A′B′C′是關(guān)于點(diǎn)O為位似中心的位似圖形,他們的頂點(diǎn)都在小正形的頂點(diǎn)上.
(1)在圖中畫出位似圖形點(diǎn)O;(要保留畫圖痕跡)
(2)△ABC與△A′B′C′的位似比是______;
(3)請(qǐng)?jiān)诖司W(wǎng)格中,以點(diǎn)C為位似中心,再畫一個(gè)△A1B1C,使它與△ABC的位似比等于2:1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱最短路線的長(zhǎng)度為兩個(gè)街區(qū)之間的“出租車距離”.設(shè)圖中每個(gè)小正方形方格的邊長(zhǎng)為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①?gòu)脑c(diǎn)O到(6,1)的“出租車距離”為______.最短路線有______條;
②與原點(diǎn)O的“出租車距離”等于30的路口共有______個(gè).
(2)①解釋應(yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請(qǐng)給出適當(dāng)?shù)恼f理或過程)
②解決問題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有______條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年安徽省合肥市一中高一自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中的方格陣表示一個(gè)縱橫交錯(cuò)的街道模型的一部分,以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,x軸,y軸的正方向分別表示正東、正北方向,出租車只能沿街道(網(wǎng)格線)行駛,且從一個(gè)路口(格點(diǎn))到另一個(gè)路口,必須選擇最短路線,稱最短路線的長(zhǎng)度為兩個(gè)街區(qū)之間的“出租車距離”.設(shè)圖中每個(gè)小正方形方格的邊長(zhǎng)為1個(gè)單位.可以發(fā)現(xiàn):
從原點(diǎn)O到(2,-1)的“出租車距離”為3,最短路線有3條;
從原點(diǎn)O到(2,2)的“出租車距離”為4,最短路線有6條.
(1)①?gòu)脑c(diǎn)O到(6,1)的“出租車距離”為______.最短路線有______條;
②與原點(diǎn)O的“出租車距離”等于30的路口共有______個(gè).
(2)①解釋應(yīng)用:從原點(diǎn)O到坐標(biāo)(n,2)(n為大于2的整數(shù))的路口A,有多少條最短路線?(請(qǐng)給出適當(dāng)?shù)恼f理或過程)
②解決問題:
從坐標(biāo)為(1,-2)的路口到坐標(biāo)為(3,36)的路口,最短路線有______條.

查看答案和解析>>

同步練習(xí)冊(cè)答案