【題目】如圖,在四邊形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,
求證:∠ADC+∠B=180
【答案】見解析.
【解析】
延長AD過C作CF垂直AD于F,由條件可證△AFC≌△AEC,得到CF=CE.再由條件AD+AB=2AE可證BE=DF,所以△CDF≌△CEB,由全等的性質可得∠B=∠FDC,問題得證.
證明:延長AD過C作CF垂直AD于F,
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AB,CF⊥AD,
∴∠AFC=∠AEC=90°,AC=AC,
∴△AFC≌△AEC(AAS),
∴AF=AE,CF=CE,
∵AD+AB=2AE,
又∵AD=AFDF,AB=AE+BE,AF=AE,
∴2AE=AE+BE+AEDF,
∴BE=DF,
在△CDF和△CBE中,,
∴△CDF≌△CBE(SAS),
∴∠B=∠FDC,
∵∠ADC+∠FDC=180°,
∴∠ADC+∠B=180.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AC=BC,以BC為直徑的⊙O交AB于E,過點E作EG⊥AC于G,交BC的延長線于F.
(1)求證:FE是⊙O的切線;
(2)若FE=4,FC=2,求⊙O的半徑及CG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點D、E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段
(1)如圖1,點沿線段自點向點以的速度運動,同時點沿線段點向點以的速度運動,幾秒鐘后,兩點相遇?
(2)如圖1,幾秒后,點兩點相距?
(3)如圖2,,,當點在的上方,且時,點繞著點以30度/秒的速度在圓周上逆時針旋轉一周停止,同時點沿直線自點向點運動,假若點兩點能相遇,求點的運動速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)學活動課中,小敏為了測量校園內旗桿的高度.先在教學樓的底端點處,觀測到旗桿頂端得,然后爬到教學樓上的處,觀測到旗桿底端的俯角是.已知教學樓中、兩處高度為米.
(1)求教學樓與旗桿的水平距離;(結果保留根號);
(2)求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(a,b)是拋物線上一動點,OB⊥OA交拋物線于點B(c,d).當點A在拋物線上運動的過程中(點A不與坐標原點O重合),以下結論:①ac為定值;②ac=﹣bd;③△AOB的面積為定值;④直線AB必過一定點.正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學生會倡導的“愛心捐款”活動結束后,學生會干部對捐款情況作了抽樣調查,并繪制了統(tǒng)計圖,圖中從左到右各長方形高度之比為,又知此次調查中捐15元和20元的人數(shù)共26人.
(1)他們一共抽查了______人;
(2)抽查的這些學生,總共捐款______元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和幾位同學做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關.因此,他們認為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .
(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結果用含a,b,n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場準備進一批兩種不同型號的衣服,已知購進A種型號衣服9件,B種型號衣服10件,則共需1810元;若購進A種型號衣服12件,B種型號衣服8件,共需1880元;已知銷售一件A型號衣服可獲利18元,銷售一件B型號衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號衣服不多于28件.
(1)求A、B型號衣服進價各是多少元?
(2)若已知購進A型號衣服是B型號衣服的2倍還多4件,則商店在這次進貨中可有幾種方案并簡述購貨方案.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com