如圖,在平面直角坐標系中,兩個函數(shù)y=x,y=-
1
2
x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQx軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點A的坐標.
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是______.
(1)由
y=x
y=-
1
2
x+6
可得
x=4
y=4

∴A(4,4);

(2)點P在y=x上,OP=t,
則點P坐標為(
2
2
t,
2
2
t)
,
點Q的縱坐標為
2
2
t
,并且點Q在y=-
1
2
x+6上,
2
2
t=-
1
2
x+6,x=12-
2
t
,
即點Q坐標為(12-
2
t,
2
2
t)
,PQ=12-
3
2
2
t
,
12-
3
2
2
t=
2
2
t
時,t=3
2
,
0<t≤3
2
時,S=
2
2
t(12-
3
2
2
t)=-
3
2
t2+6
2
t
,
當點P到達A點時,t=4
2

3
2
<t<4
2
時,S=(12-
3
2
2
t)2

=
9
2
t2-36
2
t+144
;

(3)有最大值,最大值應(yīng)在0<t≤3
2
中,
S=-
3
2
t2+6
2
t=-
3
2
(t2-4
2
t+8)+12=-
3
2
(t-2
2
)2+12
,
t=2
2
時,S的最大值為12;

(4)當正方形PQMN與△OAB重疊部分面積正好最大時,此時重合部分就是△AOB,
∵B的坐標為(12,0),PB⊥OB,
∴PB=OB=12,
∴OP=12
2

∴t≥12
2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點A與B的坐標分別為(4,0),(0,2),求:
①直線AB的解析式;
②過點C(2,0)的直線(與x軸不重合)截坐標軸于點P,若截得的小三角形△PCO與△AOB相似,試求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一測力器,在不受力的自然狀態(tài)下,測力器彈簧MN為40cm(如圖(1));當被測試者將手掌放在點P處,然后盡力向前推,測力器彈簧MN的長度會隨著受力大小的不同而發(fā)生變化,此時測力器的刻度表的指針所指的數(shù)字就是測試者的作用力;圖(2)是測力器在最大受力極限狀態(tài)時,測力器彈簧MN的最小長度為8cm;圖(3)、圖(4)是兩次測試時,測力器所展現(xiàn)的數(shù)據(jù)狀態(tài);已知測力器彈簧MN的長度y(cm)與受力x(N)之間存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)解析式;
(2)當指針指向300時,MN的長是多少?
(3)求該測力器在設(shè)計時所能承受的最大作用力是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩個水池同時放水,其水面高度(水面離池底的距離)h(米)與時間t(小時)之間的關(guān)系如圖所示(甲、乙兩個水池底面相同).
(1)在哪一段時間內(nèi),乙池的放水速度快于甲池的放水速度?
(2)求點P的坐標,由此得到什么結(jié)論?
(3)當一個池中的水先放完時,另一個池中水面的高度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一個物體沿一個斜坡下滑,它們速度y(米/秒)與其下滑時間x(秒)的關(guān)系如圖所示.
(1)寫出y與x之間的關(guān)系式;
(2)下滑4秒時物體的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一報刊銷售亭從報社訂購某晚報的價格是每份0.7元,銷售價是每份1元,賣不掉的報紙還可以以0.2元的價格退還給報社,在一個月內(nèi)(以30天計算)有20天每天可賣出100份,其余10天每天只能賣出60份,但每天報亭從報社訂購的份數(shù)必須相同,若以報亭每天從報社訂購的報紙份數(shù)為自變量x,每月所獲得的利潤為函數(shù)y.
(1)寫出y與x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)報亭應(yīng)該每天從報社訂購多少份報紙才能使每月獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某中學(xué)九年級甲、乙兩班商定舉行一次遠足活動,A、B兩地相距10千米,甲班從A地出發(fā)勻速步行到B地,乙班從B地出發(fā)勻速步行到A地.兩班同時出發(fā),相向而行.設(shè)步行時間為x小時,甲、乙兩班離A地的距離分別為y1、y2千米,y1、y2與x的函數(shù)關(guān)系圖象如圖所示.根據(jù)圖象解答下列問題:
(1)直接寫出,y1、y2與x的函數(shù)關(guān)系式;
(2)求甲、乙兩班學(xué)生出發(fā)后,幾小時相遇?相遇時乙班離A地多少千米?
(3)甲、乙兩班首次相距4千米時所用時間是多少小時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某蒜薹生產(chǎn)基地喜獲豐收,收獲蒜薹200噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、冷庫儲藏后銷售三種方式,并按這三種方式銷售,計劃平均每噸的售價及成本如下表:
銷售方式批發(fā)零售儲藏后銷售
售價(元/噸)300045005500
成本(元/噸)70010001200
若經(jīng)過一段時間,蒜薹按計劃全部售出獲得的總利潤為y(元),蒜薹零售x(噸),且零售量是批發(fā)量的
1
3

(1)求y與x之間的函數(shù)關(guān)系式;
(2)由于受條件限制,經(jīng)冷庫儲藏售出的蒜薹最多80噸,求該生產(chǎn)基地按計劃全部售完蒜薹獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

義烏市某飾品廠生產(chǎn)出一款新產(chǎn)品,上市20天全部銷售完,該廠銷售部對銷售情況進行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,飾品價格z(單位:元/件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求該廠飾品的價格z與上市時間x的函數(shù)解析式;
(3)試比較第8天與第12天的銷售金額哪天多?

查看答案和解析>>

同步練習(xí)冊答案