【題目】某校的教室A位于工地O的正西方向,且OA=200m,一臺(tái)拖拉機(jī)從O點(diǎn)出發(fā),以每秒5m的速度沿北偏西53°的方向行駛,設(shè)拖拉機(jī)的噪聲污染半徑為130m,則教室A是否在拖拉機(jī)的噪聲污染范圍內(nèi)?若不在,請(qǐng)說(shuō)明理由;若在,求出教室A受噪聲污染的時(shí)間有幾秒.(參考數(shù)據(jù):sin53°≈0.80,sin37°≈0.60tan37°≈0.75)

【答案】(1) 教室A在拖拉機(jī)的噪聲污染范圍內(nèi);(2) 影響的時(shí)間為20s

【解析】

(1)問教室A是否在拖拉機(jī)的噪聲污染范圍內(nèi),其實(shí)就是問AOM的距離是否大于污染半徑130m,如果大于則不受影響,反正則受影響.如果過(guò)AABOMB,那么AB就是所求的線段.直角三角形AOB中,∠AOB的度數(shù)容易求得,又已知了OA的值,那么AB便可求出了.然后進(jìn)行判斷即可.

(2)如果設(shè)拖拉機(jī)從CD教室受影響,那么要求教室受影響的時(shí)間,其實(shí)就是求CD的值,直角三角形ABC中,AB的值已經(jīng)求得.又有AC的值,那么BC的值就能求出了.CD也就能求出了,然后根據(jù)時(shí)間=路程÷速度即可得出時(shí)間是多少.

解:如圖,過(guò)點(diǎn)AABOM于點(diǎn)B,

∵∠MON=53°

∴∠AOM=90°53°=37度.

RtABO中,∠ABO=90°,

,

AB=AOsinAOB=200×sin37°≈120(m)

120m130m

∴教室A在拖拉機(jī)的噪聲污染范圍內(nèi).

根據(jù)題意,在OM上取C,D兩點(diǎn),連接AC,AD,使AC=AD=130m,

ABOM,

BCD的中點(diǎn),即BC=DB,

,

CD=2BC=100(m)

即影響的時(shí)間為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈市某中學(xué)為了解九年級(jí)學(xué)生體能狀況,從九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果外為A、BC、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學(xué)生?

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若九年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)九年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知D是⊙O上一點(diǎn),AB是直徑,∠BAD的平分線交⊙O于點(diǎn)E,⊙O的切線BCOE的延長(zhǎng)線于點(diǎn)C,連接OD,CD

1)求證:CDOD

2)若AB2,填空:

當(dāng)CE   時(shí),四邊形BCDO是正方形.

作△AEO關(guān)于直線OE對(duì)稱的△FEO,連接BF,BE,當(dāng)四邊形BEOF是菱形時(shí),求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

類比定義:我們知道:分式和分?jǐn)?shù)有著很多的相似點(diǎn).如類比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分?jǐn)?shù)的運(yùn)算法則,我們得到了分式的運(yùn)算法則等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù),類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.

拓展定義:

對(duì)于任何一個(gè)分式都可以化成整式與真分式的和的形式,

如:;

.

理解定義:

(1)下列分式中,屬于真分式的是:____屬于假分式的是:_____(填序號(hào))

;;.

拓展應(yīng)用:

(2)將分式化成整式與真分式的和的形式;

(3)將假分式化成整式與真分式的和的形式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,DE平分∠ADCBC邊于點(diǎn)E,PDE上的一點(diǎn)(PEPD),PMPD,PMAD邊于點(diǎn)M.

(1)若點(diǎn)F是邊CD上一點(diǎn),滿足PFPN,且點(diǎn)N位于AD邊上,如圖1所示.

求證:①PN=PF;DF+DN=DP;

(2)如圖2所示,當(dāng)點(diǎn)FCD邊的延長(zhǎng)線上時(shí),仍然滿足PFPN,此時(shí)點(diǎn)N位于DA邊的延長(zhǎng)線上,如圖2所示;試問DF,DN,DP有怎樣的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,,AD9,點(diǎn)PAD邊上的一個(gè)動(dòng)點(diǎn),連接BP,將矩形ABCD沿BP折疊,得到A1PB,連接A1C,取A1C的三等分點(diǎn)QCQA1Q),當(dāng)點(diǎn)P從點(diǎn)A出發(fā),沿邊AD運(yùn)動(dòng)到點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)Q的運(yùn)動(dòng)路徑長(zhǎng)為( 。

A.πB.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】龍蝦狂歡季再度開啟,第屆中國(guó)合肥龍蝦節(jié)的主題是“讓你知蝦,也知稻”,稻田小龍蝦養(yǎng)殖技術(shù)在合肥周邊的鄉(xiāng)鎮(zhèn)大力推廣,已知每千克小龍蝦養(yǎng)殖成本為元,在整個(gè)銷售旺季的天里,銷售單價(jià)/千克,與時(shí)間(天)之間的函數(shù)關(guān)系式為:,日銷售量(千克)與時(shí)間第(天)之間的函數(shù)關(guān)系如圖所示:

1)求日銷售量與時(shí)間的函數(shù)關(guān)系式?

2)哪一天的日銷售利潤(rùn)最大?最大利潤(rùn)是多少?

3)在實(shí)際銷售的前天中,該養(yǎng)殖戶決定銷售千克小龍蝦,就捐贈(zèng)元給村里的特困戶,在這前天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)隨時(shí)間的增大而增大,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1ax+223y2x32+1交于點(diǎn)A(1,3),過(guò)點(diǎn)Ax軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:①無(wú)論x取何值,y2的值總是正數(shù);②a;③當(dāng)x0時(shí),y2y16;④AB+AC10;其中正確結(jié)論的個(gè)數(shù)是(

A.①②④B.①③④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校八年級(jí)共400名學(xué)生,為了解該年級(jí)學(xué)生的視力情況,從中隨機(jī)抽取40名學(xué)生的視力數(shù)據(jù)作為樣本,數(shù)據(jù)統(tǒng)計(jì)如下:

4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.1 5.2

5.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2

4.4 4.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1

4.2 4.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3

根據(jù)數(shù)據(jù)繪制了如下的表格和統(tǒng)計(jì)圖:

等級(jí)

視力(x

頻數(shù)

頻率

4

0.1

12

0.3

10

0.25

合計(jì)

40

1

根據(jù)上面提供的信息,回答下列問題:

1)統(tǒng)計(jì)表中的   ,   

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)估計(jì)該校八年級(jí)學(xué)生視力為級(jí)的有多少人?

4)該年級(jí)學(xué)生會(huì)宣傳部有2名男生和2名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)參加防控近視,愛眼護(hù)眼宣傳活動(dòng),請(qǐng)用樹狀圖法或列表法求出恰好選中“11的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案